首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

2.
Calcineurin is required for skeletal muscle hypertrophy.   总被引:23,自引:0,他引:23  
  相似文献   

3.
In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.  相似文献   

4.
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

5.
Vasodilatory mechanisms in contracting skeletal muscle.   总被引:11,自引:0,他引:11  
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within approximately 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.  相似文献   

6.
Molecular and Cellular Biochemistry - The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy...  相似文献   

7.
Excess production and accumulation of beta-amyloid peptide (betaAP) are central for pathogenesis of Alzheimer's disease. Numerous studies showed that betaAP possessed wide range of toxic effects on neurons, however the mechanism of betaAP influence on another types of excitable cells, for example, skeletal muscle fibres, is unknown. In electrophysiological experiments on the mouse diaphragm, we found for the first time that betaAP (25-35 fragment, 10-6 M) disturbs the processes of the resting membrane potential generation in muscle fibres, leading to depolarization by two mechanisms: 1) inhibition of Na+,K(+)-ATPase, which leads to loss of impact of this pump to the resting membrane potential; 2) increase of membrane cationic permeability due to formation of "amyloid" channels blocked with Zn2+ ions. Our results significantly broaden current understanding of mechanisms of motor disturbances and skeletal muscle pathology in Alzheimer's disease, inclusion body myositis and other betaAP-related disorders.  相似文献   

8.
9.
10.
Multiple waves of muscle precursors are released from skeletal muscle progenitor cells throughout developmental life, and this process is initiated in precise locations in the embryo. Skeletal muscle diversifies not only after the acquisition of muscle identity, but curiously heterogeneity is observed even in the stem cell population. Recent studies on cell lineage, cell fusion and the nature of post-natal satellite cells have expanded on our fundamental knowledge of the formation of this tissue, and how this tissue is replenished by resident and circulating regenerative stem cells during adult life.  相似文献   

11.
Whereas novel pathways of pathological heart enlargement have been unveiled by thoracic aorta constriction in genetically modified mice, the molecular mechanisms of adaptive cardiac hypertrophy remain virtually unexplored and call for an effective and well-characterized model of physiological mechanical loading. Experimental procedures of maximal oxygen consumption (VO(2 max)) and intensity-controlled treadmill running were established in 40 female and 36 male C57BL/6J mice. An inclination-dependent VO(2 max) with 0.98 test-retest correlation was found at 25 degrees treadmill grade. Running for 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50% (adjusted to weekly VO(2 max) testing) increased VO(2 max) to a plateau 49% above sedentary females and 29% in males. Running economy improved in both sexes, and echocardiography indicated significantly increased left ventricle posterior wall thickness. Ventricular weights increased by 19-29 and 12-17% in females and males, respectively, whereas cardiomyocyte dimensions increased by 20-32, and 17-23% in females and males, respectively; skeletal muscle mass increased by 12-18%. Thus the model mimics human responses to exercise and can be used in future studies of molecular mechanisms underlying these adaptations.  相似文献   

12.
13.
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.  相似文献   

14.
15.
Recent data have suggested that insulin resistance may be associated with a diminished ability of skeletal muscle to undergo hypertrophy (Paturi S, Gutta AK, Kakarla SK, Katta A, Arnold EC, Wu M, Rice KM, Blough ER. J Appl Physiol 108: 7-13, 2010). Here we examine the effects of insulin resistance using the obese Zucker (OZ) rat with increased muscle loading on the regulation of the mammalian target of rapamycin (mTOR) and its downstream signaling intermediates 70-kDa ribosomal protein S6 kinase (p70S6k), ribosomal protein S6 (rpS6), eukaryotic elongation factor 2 (eEF2), and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Compared with that observed in lean Zucker (LZ) rats, the degree of soleus muscle hypertrophy as assessed by changes in muscle wet weight (LZ: 35% vs. OZ: 16%) was significantly less in the OZ rats after 3 wk of muscle overload (P < 0.05). This diminished growth in the OZ rats was accompanied by significant impairments in the ability of the soleus to undergo phosphorylation of mTOR (Ser(2448)), p70S6k (Thr(389)), rpS6 (Ser(235/236)), and protein kinase B (Akt) (Ser(473) and Thr(308)) (P < 0.05). Taken together, these data suggest that impaired overload-induced hypertrophy in insulin-resistant skeletal muscle may be related to decreases in the ability of the muscle to undergo mTOR-related signaling.  相似文献   

16.
17.
About 30 years ago, the discovery of the connection between UV radiation and the immune system triggered the field of photoimmunology. In that time, many aspects were studied, and a complex picture emerged. UV absorption results in multi-tiered molecular and cellular UV radiation-induced events, eventually affecting the immune system. The shorter wavelengths of the UV spectrum, i.e. UVB appear to be the most critical players for impairing immune reactions. This review summarizes and discusses UVB radiation-induced effects on the skin, considering the primary efferent molecular events following energy absorption of UVB radiation, ending with the various afferent cellular changes, such as induction of regulatory T cells.  相似文献   

18.
A procedure for training laboratory cats to perform weight-lifting exercise has been developed. This program consists of operantly conditioning adult cats to move a bar a specific distance with their right forelimb to receive a food reward. Weights attached to the bar via a pully are lifted as the bar is moved. The cat is then exercised at the same load for 5 days before the weight is increased. A linear potentiometer, attached to the hinged bar, produces an analog voltage proportional to the bar movement. This voltage is then monitored by a general purpose computer using a real-time behavioral program. In this way, the numbber of times the cat moves the bar, the time required to move the bar, and the time between bar movements are all recorded. The total physical work accomplished and the average power expended by the cat during the weight-lifting exercise regimen can then be calculated. This procedure has the advantage of inducing significant gross muscle hypertrophy (from 7 to 34%) and muscle fiber hypertrophy in one limb, while the muscles of the opposite limb can be utilized for comparative studies. The striking morphological and histochemical transformations that occur during physiological hypertrophy are now available for experimental investigation using this model.  相似文献   

19.
20.
The physiological importance of the increase in androgen receptors in exercise-induced muscle hypertrophy was investigated in rats. Together with training rat gastrocnemius muscles by electrical stimulation every other day for 2 weeks, male rats were administered the androgen receptor antagonist, oxendolone. The androgen receptor antagonist effectively decreased the wet mass of the prostate, an androgen target organ, and did not significantly affect body mass. The increase in muscle mass induced by electrical stimulation was effectively suppressed by the androgen receptor blockade. The mean degree of muscle hypertrophy in the antagonist-treated group was significantly lower than that in the control group (102.30% vs 107.41%, respectively;P=0.006). This result suggests that the androgen pathway has a significant effect in exercise-induced muscle hypertrophy and emphasizes the importance of the increase in the number of androgen receptors in exercised muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号