首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
rac-Bupivacaine HCl was infused intravenously to constant arterial blood drug concentrations in sheep using a regimen of 4 mg/min for 15 min followed by 1 mg/min to 24 h. At 24 h, arterial blood was sampled, the animal was killed with a bolus of KCl solution, then rapidly dissected and samples were obtained from heart, brain, lung, kidney, liver, muscle, fat, gut, and rumen. Tissue:blood distribution coefficients for (+)-(R)-bupivacaine exceeded those of (?)-(S)-bupivacaine (P < 0.05) for heart, brain, lung, fat, gut, and rumen by an overall mean of 43%. Blood:plasma distribution coefficients of (?)-(S)-bupivacaine exceeded those of (+)-(R)-bupivacaine by a mean of 29% and this offset the tissue:blood distribution coefficients so that the previously significant enantioselective differences disappeared. It is concluded that although enantioselectivity of bupivacame distribution is shown by the measured tissue:blood distribution coefficients, it is not shown when tissue:plasma water distribution coefficients are calculated, suggesting that there is no intrinsic difference between the bupivacaine enantiomers in tissue affinity. Sheep given fatal intravenous bolus doses of rac-bupivacaine had significantly greater concentrations of (+)-(R)-bupivacaine than (?)-(S)-bupivacaine in brain (P = 0.028) and ventricle (P = 0.036); these could augment the greater myocardial toxicity of this enantiomer found in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The aim of the present study was to investigate the stereoselectivity in the kinetic disposition and the transplacental distribution of bupivacaine in term parturients during labor. Maternal age ranged from 18-37 years and fetal gestational age from 37.6-41.5 weeks. Healthy parturients (n = 23) received epidural 0.5% racemic bupivacaine alone (group A) or combined with epinephrine (group B). Maternal venous blood was sampled at regular intervals until 8 h after drug administration and umbilical venous blood was obtained at delivery. Bupivacaine enantiomers were determined in plasma samples by HPLC using a Chiralcel(R) OD-R column and a UV detector. One- or two-compartment models were fitted to data and differences between the (+)-(R) and (-)-(S) enantiomers were compared with the paired Wilcoxon test (P< 0.05). The influence of epinephrine was evaluated using the unpaired Mann-Whitney test (P< 0.05). The disposition of bupivacaine in maternal plasma was stereoselective, with higher V(d/f) (140.60 vs. 132.81 L for group A and 197.86 vs. 169.46 L for group B) and C(l/f) (29.00 vs. 25.43 L/h for group A and 33.15 vs. 26.39 L/h for group B) and lower t(1/2)beta (3.24 vs. 3.30 h for group A and 4.36 vs. 4.45 h for group B) being observed for (+)-(R)-bupivacaine. The combined administration of epinephrine resulted in higher V(d/f) (197.86 vs. 140.60 L for (+)-(R) and 169.46 vs. 132.81 L for (-)-(S)) and t(1/2)beta values (4.36 vs. 3.24 h for (+)-(R) and 4.45 vs. 3.30 h for (-)-(S)). The transplacental distribution of bupivacaine was stereoselective only when bupivacaine was administered without epinephrine (group B), with a higher cord blood/maternal blood ratio being observed for (-)-(S)-bupivacaine (0.40 vs. 0.35). Chirality 16:65-71, 2004.  相似文献   

3.
Bupivacaine and levobupivacaine are amino amide local anesthetics commonly used in medical practice. Although bupivacaine consists of a racemic mixture of S (–)-bupivacaine and R (+)-bupivacaine enantiomers, levobupivacaine is comprised of pure S (–)-bupivacaine. It has been known that levobupivacaine is preferable to bupivacaine since it may cause cardiovascular and nervous system toxicity. For determining genotoxicity of these anesthetics, we used the wing somatic mutation and recombination test in Drosophilamelanogaster. Three-day-old trans-heterozygous larvae were treated with bupivacaine and levobupivacaine. Analysis of the standard crosses indicated that bupivacaine and levobupivacaine did not exhibit mutagenic or recombinogenic activity until toxic doses have been reached at the larval stage. When we examined bupivacaine and levobupivacaine in the HB cross, bupivacaine did not exhibit any genotoxicity at high concentrations (500 µg/mL), but levobupivacaine did exert genotoxicity at high concentrations (1000 µg/mL)—depending on the substantial recombinogenic effect.  相似文献   

4.
Receptor binding, electrophysiological, and inotropic effects of the pure dihydropyridine enantiomers (+)S202-791 and (-)R202-791 were studied in cardiac preparations. The KI for (+)S202-791 binding correlated with the ED50's for an increase in contractile force and an increase in calcium current, the latter effect occurring at depolarized as well as resting holding potentials. The KI for (-)R202-791 binding was much lower than the IC50's for inhibition of calcium current measured at holding potentials of -80 or -90 mV and a negative inotropic effect, but correlated closely with the IC50 for inhibition of calcium current measured at -30 mV. Thus, (+)S202-791, is a voltage independent calcium channel activator and (-)R202-791 is a voltage dependent calcium channel inhibitor.  相似文献   

5.
The effects of the agonist enantiomer S(-)Bay K 8644 on gating charge of L-type Ca channels were studied in single ventricular myocytes. From a holding potential (Vh) of -40 mV, saturating (250 nm) S(-)Bay K shifted the half-distribution voltage of the activation charge (Q1) vs. V curve -7.5 +/- 0.8 mV, almost identical to the shift produced in the Ba conductance vs. V curve (-7.7 +/- 2 mV). The maximum Q1 was reduced by 1.7 +/- 0.2 nC/microF, whereas Q2 (charge moved in inactivated channels) was increased in a similar amount (1.4 +/- 0.4 nC/microF). The steady-state availability curves for Q1, Q2, and Ba current showed almost identical negative shifts of -14.8 +/- 1.7 mV, -18.6 +/- 5.8 mV, and -15.2 +/- 2.7 mV, respectively. The effects of the antagonist enantiomer R(+)BayK 8644 were also studied, the Q1 vs. V curve was not significantly shifted, but Q1max (Vh = -40 mV) was reduced and the Q1 availability curve shifted by -24.6 +/- 1.2 mV. We concluded that: a) the left shift in the Q1 vs. V activation curve produced by S(-)BayK is a purely agonistic effect; b) S(-)BayK induced a significantly larger negative shift in the availability curve than in the Q1 vs. V relation, consistent with a direct promotion of inactivation; c) as expected for a more potent antagonist, R(+)Bay K induced a significantly larger negative shift in the availability curve than did S(-)Bay K.  相似文献   

6.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

7.
Less than 11% of the dose of bupivacaine could be accounted for in urine from 10 patients receiving continuous epidural infusions. HPLC analysis of metabolites confirmed (S)-bupivacaine was more extensively metabolised than (R)-bupivacaine, and dealkylation was the predominant metabolic pathway although co-elution of metabolites made quantitation difficult. The percentage of (S)-2',6'-pipecoloxylidide and co-eluting metabolites excreted relative to (R)-2',6'-pipecoloxylidide from three patients was 0.32+/-0.05, while for seven patients it was 1.28+/-0.09. Conversely, the percentage of (S)-3'-hydroxy bupivacaine and co-eluants excreted relative to (R)-2',6'-pipecoloxylidide from the three patients (1.76+/-0.48) was greater than the seven patients (0.19+/-0.09). Urinary metabolites were analysed for evidence of aliphatic hydroxylation of bupivacaine. Chiral liquid chromatography-mass spectrometry (LC-MS) on an alpha(1)-glycoprotein column at pH 7 used hydroxylamine acetate as the volatile mobile phase. Compounds tentatively identified as hydroxybupivacaines by MRM were verified by their product ion spectra in a subsequent MS-MS run. Eighteen oxygenated metabolites of bupivacaine were detected, half of which were hydroxylated on nonaromatic groups. Equal numbers of mono- and dihydroxybupivacaines were excreted. There was no evidence to suggest the presence of (S)-4'-hydroxybupivacaine, 2'-hydroxymethylbupivacaine, 3'-hydroxy-2',6'-pipecoloxylidide or a piperidone. The metabolite previously identified as (S)-4'-hydroxybupivacaine was not hydroxylated on the xylyl group.  相似文献   

8.
We previously showed that lysine substitutions at two residues in segment 6 of domain 3 in voltage-gated Na(+) channel rNav1.4 (S1276K, L1280K) reduced steady-state inactivated local anesthetic block. Here we studied cysteine substitutions at the same residues (S1276C, L1280C). We used whole-cell recordings to determine local anesthetic block (100 microM bupivacaine) before and after cysteine modification with 1.5 mM 2-aminoethyl methanethiosulfonate (MTSEA). Compared with rNav1.4, steady-state resting bupivacaine block at -180 mV was increased in S1276C, while inactivated block at -50 mV was not different in the mutants. After application of MTSEA at -160 mV, rNav1.4 showed enhanced bupivacaine block and a negative shift in V(1/2) of the bupivacaine affinity curve, while L1280C and S1276C showed a decrease in inactivated bupivacaine block after MTSEA. Application of MTSEA at 0 mV produced similar results in rNav1.4 and L1280C, but an opposite effect in S1276C, i.e., enhancement of bupivacaine block, with a large negative shift in V(1/2) of the bupivacaine affinity curve similar to that found in rNav1.4. We conclude that 1) MTSEA modification of 1276C or 1280C decreases inactivated bupivacaine block similar to that found in L1280K and S1276K, 2) residue 1276C is only accessible to MTS-modification in the resting state, and 3) MTSEA may modify a native cysteine in rNav1.4 that produces an allosteric, indirect effect on bupivacaine affinity.  相似文献   

9.
Jäger H  Grissmer S 《FEBS letters》2001,488(1-2):45-50
Using the whole-cell recording mode of the patch-clamp technique we studied the effects of removal of extracellular potassium, [K(+)](o), on a mammalian Shaker-related K(+) channel, hKv1.5. In the absence of [K(+)](o), current through hKv1.5 was similar to currents obtained in the presence of 4.5 mM [K(+)](o). This observation was not expected as earlier results had suggested that either positively charged residues or the presence of a nitrogen-containing residue at the external TEA(+) binding site (R487 in hKv1.5) caused current loss upon removal of [K(+)](o). However, the current loss in hKv1.5 was observed when the extracellular pH, pH(o), was reduced from 7.4 to 6.0, a behavior similar to that observed previously for current through mKv1.3 with a histidine at the equivalent position (H404). These observations suggested that the charge at R487 in hKv1.5 channels was influenced by other amino acids in the vicinity. Replacement of a histidine at position 463 in hKv1.5 by glycine confirmed this hypothesis making this H463G mutant channel sensitive to removal of [K(+)](o) even at pH(o) 7.4. We conclude that the protonation of H463 at pH 7.4 might induce a pK(a) shift of R487 that influences the effective charge at this position leading to a not fully protonated arginine. Furthermore, we assume that the charge at position 487 in hKv1.5 can directly or indirectly disturb the occupation of a K(+) binding site within the channel pore possibly by electrostatic interaction. This in turn might interfere with the concerted transition of K(+) ions resulting in a loss of K(+) conduction.  相似文献   

10.
The actions of the optical enantiomers of BAY K 8644 and Sandoz 202,791 were studied on barium inward currents recorded using the whole-cell configuration of the patch clamp technique from enzymatically isolated smooth muscle cells from the rabbit ear artery. The enantiomers were applied by bath perfusion or rapidly by a concentration jump technique, which enabled the study of drug action under equilibrium and nonequilibrium conditions. A larger effect of agonists was seen on peak inward current in 110 mM Ba when small rather than large depolarizations were applied. The midpoint voltage of the steady-state inactivation curve of IBa was -12.8 +/- 1.9 mV (n = 4) in the absence of drug, -16.4 +/- 2.5 mV (n = 4) in 1 microM (+)202,791, and -31.4 +/- 0.4 mV (n = 4) in 1 microM (-)202,791. The rate of onset of action of the agonist and antagonist enantiomers of BAY K 8644 and Sandoz 202,791 was studied by rapid application during 20-ms depolarizing steps from different holding potentials to +30 mV at 1 or 0.2 Hz. The drugs were applied as concentration jumps between two single pulses of a pulse train. The rates of onset of drug action on peak IBa during a 1-Hz pulse train were concentration dependent over the range of 100 nM-3 microM for both (+) and (-)202,791. The rate of onset of inhibition of peak current by antagonist enantiomers was not significantly influenced by the test pulse frequency. At a holding potential of -60 mV, the onset rate of the increase in peak IBa on application of 1 microM of agonist enantiomers (+)202,791 or (-)BAY K 8644 during a train of pulses occurred with mean time constants of 2.1 +/- 0.7 s (n = 7) and 2.3 +/- 0.2 s (n = 4), respectively. The onset of current increase on application of 1 microM (+)202,791 during a single voltage clamp step to 20 mV was faster, with a mean time constant of 380 +/- 80 ms (n = 3).  相似文献   

11.
Relative expression pattern of short and long isoforms of hKv4.3 channels was evaluated by RT-PCR and RPA. Electrophysiological studies were performed in HEK293 cells transfected with short or long hKv4.3 cDNA. The long variant L-hKv4.3 was the only form present in lung, pancreas, and small intestine. The short variant S-hKv4.3 was predominant in brain whereas expression levels of the two isoforms were similar in cardiac and skeletal muscles. Properties of the ionic channels encoded by L-hKv4.3 and S-hKv4.3 cDNAs were essentially similar. Cadmium chloride and verapamil inhibited hKv4.3 current (with EC50s of 0.110 +/- 0.004 mM and 492.9 +/- 15.1 microM, respectively). Verapamil also accelerated current inactivation. Another calcium channel antagonist nicardipine was found inactive. In conclusion, this study confirms that both isoforms underlie the transient outward potassium current. Moreover, calcium channel inhibitors markedly affect hKv4.3 current, an effect which must be considered when evaluating transient outward potassium channel properties in native tissues.  相似文献   

12.
Tu DN  Zou AR  Liao YH  Du YM  Wang XP  Li L 《生理学报》2008,60(4):525-534
采用双电极电压钳技术,研究酮色林对表达在非洲爪蟾卵母细胞上的野生型和Y652突变型人类ether-a-go-go相关基因(human ether-a-go-go-related gene,HERG)钾通道的阻断效应,观测HERG通道的分子位点特性改变对其阻断效应的影响.结果显示,酮色林以电压依赖性和浓度依赖性的方式阻断野生型的HERG钾通道电流.尾电流包裹程序记录电流显示酮色林对HERG钾通道微小的张力性阻断.阻断特征符合对开放状态通道的阻断特征.酮色林也能调节失活状态的HERG钾通道.位于孔道S6区的氨基酸位点突变Y652A和Y652R可显著减弱酮色林对HERG通道的阻断作用.同野生犁HERG钾通道的阻断相比,Y652A突变使阻断的IC50提高72倍,而Y652R突变使阻断的IC50提高53倍.Y652A和Y652R的阴断效应之间没有明显的差别.以上结果提示,酮色林优先阻断开放状态的HERG钾通道,而Y652是酮色林与通道结合的关键位点之一.  相似文献   

13.
A sensitive and efficient chiral assay for bupivacaine and its three principal metabolites desbutylbupivacaine, 4′‐hydroxybupivacaine, and 3′‐hydroxybupivacaine has been applied to urine from five male patients receiving postoperative epidural infusions of rac‐bupivacaine fentanyl over 60–120 hr. The fraction of the dose of bupivacaine (total dose 840–2093 mg) accounted for in urine was 75 ± 6%. The rate of excretion of bupivacaine enantiomers approximated a steady state after ∼30 hr with values of 1.27 ± 0.26 and 0.76 ± 0.13 mg hr−1 for (R)‐ and (S)‐enantiomers, respectively. The fraction of the dose of bupivacaine enantiomer excreted unchanged in the urine (fe) varied from 14.3% to 39.1% for (+)‐(R)‐bupivacaine and 9.2% to 14.0% for (−)‐(S)‐bupivacaine in the five patients. The rate of excretion of all metabolites also reached a steady state after ∼30 hr and the relative amounts of metabolites excreted into urine (fm) suggest bupivacaine is subject to regioselective and stereoselective clearance, which may vary from patient to patient. Chirality 11:50–55, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
A selective, accurate and reproducible high-performance liquid chromatographic (HPLC) method for the separation of individual enantiomers of DRF 2725 [R(+)-DRF 2725 and S(-)-DRF 2725 or ragaglitazar] was obtained on a chiral HPLC column (Chiralpak). During method optimization, the separation of enantiomers of DRF 2725 was investigated to determine whether mobile phase composition, flow-rate and column temperature could be varied to yield the base line separation of the enantiomers. Following liquid-liquid extraction, separation of enantiomers of DRF 2725 and internal standard (I.S., desmethyl diazepam) was achieved using an amylose based chiral column (Chiralpak AD) with the mobile phase, n-hexane-propanol-ethanol-trifluoro acetic acid (TFA) in the ratio of 89.5:4:6:0.5 (v/v). Baseline separation of DRF 2725 enantiomers and I.S., free from endogenous interferences, was achieved in less than 25 min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of each enantiomer to I.S. was used for quantification of plasma samples. Nominal retention times of R(+)-DRF 2725, S(-)-DRF 2725 and I.S. were 15.8, 17.7 and 22.4 min, respectively. The standard curves for DRF 2725 enantiomers were linear (R(2) > 0.999) in the concentration range 0.3-50 microg/ml for each enantiomer. Absolute recovery, when compared to neat standards, was 70-85% for DRF 2725 enantiomers and 96% for I.S. from rat plasma. The lower limit of quantification (LLOQ) for each enantiomers of DRF 2725 was 0.3 microg/ml. The inter-day precisions were in the range of 1.71-4.60% and 3.77-5.91% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. The intra-day precisions were in the range of 1.06-11.5% and 0.58-12.7% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Accuracy in the measurement of quality control (QC) samples was in the range 83.4-113% and 83.3-113% for R(+)-DRF 2725, S(-)-DRF 2725, respectively. Both enantiomers and I.S. were stable in the battery of stability studies viz., bench-top (up to 6 h), auto-sampler (up to 12 h) and freeze/thaw cycles (n = 3). Stability of DRF 2725 enantiomers was established for 15 days at -20 degrees C. The application of the assay to a pharmacokinetic study of ragaglitazar [S(-)-DRF 2725] in rats is described. It was unequivocally demonstrated that ragaglitazar does not undergo chiral inversion to its antipode in vivo in rat plasma.  相似文献   

15.
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5alpha(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3, 4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1, 2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.  相似文献   

16.
D J Porter  E Abushanab 《Biochemistry》1992,31(35):8216-8220
The enantiomers of erythro-9-(2-hydroxy-3-nonyl)adenine [(+)- and (-)-EHNA) bound to adenosine deaminase (ADA) at pH 7 with concomitant changes in the optical properties of the enzyme. The association rate constant for (+)-EHNA was 2.9 x 10(6) M-1 s-1 and that for (-)-EHNA was 6.4 x 10(6) M-1 s-1. The dissociation of (-)-EHNA.ADA or (+)-EHNA.ADA in the presence of excess coformycin was monitored by the quenching of enzyme fluorescence as coformycin.ADA was formed. The dissociation rate constants of (+)- and (-)-EHNA.ADA were 0.0054 s-1 and 2.7 s-1, respectively. A similar value for the dissociation rate constant (0.005 s-1) for (+)-EHNA.ADA was calculated from the time course for the appearance of catalytic activity after dilution of (+)-EHNA.ADA into 100 microM adenosine. The Ki values of ADA for (+)- and (-)-EHNA were similar to the dissociation constants calculated from the ratio of the respective dissociation and association rate constants. The biphasic time-dependent inhibition of the catalytic activity of ADA by (+/- )-EHNA [Frieden, C., Kurz, L. C., & Gilbert, H. R. (1980) Biochemistry 19, 5303-5309] was confirmed. However, the catalytic activity of ADA was inhibited monophasically by (+)-EHNA. Thus, the biphasic nature of the time course for inhibition of ADA by (+/- )-EHNA was the result of the presence of both enantiomers of the inhibitor in this assay. These kinetic data were interpreted in terms of single-step mechanisms for binding of (+)- and (-)-EHNA.  相似文献   

17.
Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.  相似文献   

18.
The effects of oral treatment of rats with pure enantiomers of flurbiprofen in comparison to racemic flurbiprofen on ex vivo release of eicosanoids from gastric mucosa, jejunum, lung, brain and clotting whole blood were investigated. With the S(+) enantiomer and the racemate dose-dependent inhibition of release of cyclooxygenase products of arachidonate metabolism in all tissues tested was observed, while release of leukotriene (LT) C4 was inhibited in gastric mucosa, but not in jejunum and lung. On the other hand, the R(-) enantiomer inhibited cyclooxygenase in the various tissues less potently and to a variable degree with no significant effect in the jejunum. The R(-) enantiomer had no effect on LTC4 release from any of the tissues investigated. Furthermore, the effect of a high dose of 25 mg/kg of the S(+) enantiomer on release of cyclooxygenase products from the various tissues was much longer lasting than that of an identical dose of the R(-) enantiomer. Stereoselective pharmacokinetics of the flurbiprofen enantiomers and/or organ specific cyclooxygenase activities could underly these results. The more potent cyclooxygenase inhibition by the S(+) enantiomer correlates with its higher anti-inflammatory activity and gastrointestinal toxicity. On the other hand, both enantiomers have been shown previously to be almost equally effective analgesics. Inhibition of brain cyclooxygenase might contribute to this effect.  相似文献   

19.
20.
Y Xu  P Tang  L Firestone    T T Zhang 《Biophysical journal》1996,70(1):532-538
Whether proteins or lipids are the primary target sites for general anesthetic action has engendered considerable debate. Recent in vivo studies have shown that the S(+) and R(-) enantiomers of isoflurane are not equipotent, implying involvement of proteins. Bovine serum albumin (BSA), a soluble protein devoid of lipid, contains specific binding sites for isoflurane and other anesthetics. We therefore conducted 19F nuclear magnetic resonance measurements to determine whether binding of isoflurane to BSA was stereoselective. Isoflurane chemical shifts were measured as a function of BSA concentration to determine the chemical shift differences between the free and bound isoflurane. KD was determined by measuring the 19F transverse relaxation times (T2) as a function of isoflurane concentration. The binding duration was determined by assessing increases in 1/T2 as a result of isoflurane exchanging between the free and bound states. The S(+) and R(-) enantiomers exhibited no stereoselectivity in chemical shifts and KD values (KD = 1.3 +/- 0.2 mM, mean +/- SE, for S(+), R(-), and the racemic mixture). Nonetheless, stereoselectivity was observed in dynamic binding parameters; the S(+) enantiomer bound with slower association and dissociation rates than the R(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号