首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The plastid genome (ptDNA) of higher plants is highly polyploid, and the 1000-10 000 copies are compartmentalized with up to approximately 100 plastids per cell. The problem we address here is whether or not a newly arising genome can be established in a developing tobacco shoot, and be transmitted to the seed progeny. We tested this by generating two unequal ptDNA populations in a cultured tobacco cell. The parental tobacco plants in this study have an aurea (yellowish-golden) leaf color caused by the presence of a bar(au) gene in the ptDNA. In addition, the ptDNA carries an aadA gene flanked with the phiC31 phage site-specific recombinase (Int) attP/attB target sites. The genetically distinct ptDNA copies were obtained by Int, which either excised only the aadA marker gene (i.e. did not affect the aurea phenotype) or triggered the deletion of both the aadA and bar(au) transgenes, and thereby restored the green color. The ptDNA determining green plastids represented only a small fraction of the population and was not seen in a transient excision assay, and yet three out of the 53 regenerated shoots carried green plastids in all developmental layers. The remaining 49 Int-expressing plants had either exclusively aurea (24) or variegated (25) leaves with aurea and green sectors. The formation of homoplastomic green shoots with the minor green ptDNA in all developmental layers suggests that the ptDNA population in a regenerating shoot apical meristem derives from a small number of copies selected through a stochastic process.  相似文献   

2.
Successful manipulation of the plastid genome (ptDNA) has been carried out so far only in tissue-culture cells, a limitation that prevents plastid transformation being applied in major agronomic crops. Our objective is to develop a tissue-culture independent protocol that enables manipulation of plastid genomes directly in plants to yield genetically stable seed progeny. We report that in planta excision of a plastid aurea bar gene (bar(au) ) is detectable in greenhouse-grown plants by restoration of the green pigmentation in tobacco leaves. The P1 phage Cre or PhiC31 phage Int site-specific recombinase was delivered on the Agrobacterium T-DNA injected at the axillary bud site, resulting in the excision of the target-site flanked marker gene. Differentiation of new apical meristems was forced by decapitating the plants above the injection site. The new shoot apex that differentiated at the injection site contained bar(au)-free plastids in 30-40% of the injected plants, of which 7% transmitted the bar(au)-free plastids to the seed progeny. The success of obtaining seed with bar(au)-free plastids depended on repeatedly forcing shoot development from axillary buds, a process that was guided by the size and position of green sectors in the leaves. The success of in planta plastid marker excision proved that manipulation of the plastid genomes is feasible within an intact plant. Extension of the protocol to in planta plastid transformation depends on the development of new protocols for the delivery of transforming DNA encoding visual markers.  相似文献   

3.
Plastid marker gene excision by the phiC31 phage site-specific recombinase   总被引:5,自引:0,他引:5  
Marker genes are essential for selective amplification of rare transformed plastid genome copies to obtain genetically stable transplastomic plants. However, the marker gene becomes dispensable when homoplastomic plants are obtained. Here we report excision of plastid marker genes by the phiC31 phage site-specific integrase (Int) that mediates recombination between bacterial (attB) and phage (attP) attachment sites. We tested marker gene excision in a two-step process. First we transformed the tobacco plastid genome with the pCK2 vector in which the spectinomycin resistance (aadA) marker gene is flanked with suitably oriented attB and attP sites. The transformed plastid genomes were stable in the absence of Int. We then transformed the nucleus with a gene encoding a plastid-targeted Int that led to efficient marker gene excision. The aadA marker free Nt-pCK2-Int plants were resistant to phosphinothricin herbicides since the pCK2 plastid vector also carried a bar herbicide resistance gene that, due to the choice of its promoter, causes a yellowish-golden (aurea) phenotype. Int-mediated marker excision reported here is an alternative to the currently used CRE/loxP plastid marker excision system and expands the repertoire of the tools available for the manipulation of the plastid genome.  相似文献   

4.
A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T(0) lox plants was crossed with T(0) Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T(1) plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T(1) hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T(2) plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.  相似文献   

5.
The model plant Medicago truncatula exhibits biparental plastid inheritance   总被引:1,自引:0,他引:1  
The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80% of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F(1) plants possessed ptDNAs from both parents. Interestingly, cotyledons of F(1) plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F(2) population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.  相似文献   

6.
将置于两个同向lox位点之间的Bar基因表达盒与大豆胰蛋白酶抑制剂SKTI基因表达盒融合后获得相应植物表达载体,转化烟草Wisconsin 38后获得对棉铃虫具有明显抗性的SKTI转基因植株。SKTI转基因植株通过叶盘二次转化法导入Cre基因,对再生植株叶盘进行Basta的抗性检测,检测Bar基因的删除情况。结果表明:绝大多数再生植株对应叶盘在含8 mg/L PPT的筛选培养基上无法再生,Bar基因被删除的效率在38%~100%之间。对Bar基因删除区域进行PCR及克隆测序后发现Bar基因表达盒被精确删除。对Bar基因删除植株开花自交获得的分离后代进行NPTⅡ抗性检测,5株NPTⅡ敏感植株分子检测显示均只含有SKTI基因而无Cre基因存在,为无选择标记基因的SKTI转基因植株。  相似文献   

7.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组。利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryza sativa L.)中介导转基因的剔除进行了研究。Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actin1启动子和gusA基因之间。当hpt在Cre酶作用下被剔除时,actin1启动子可以和gusA基因融合在一起从而驱动GUS表达。通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻。利用有性杂交方法将cre基因导入到转化lox结构的植株中。在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除。研究进一步通过Cre/lox介导剔除转双价抗虫sck  cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因。在9个转lox-hpt-lox-sck-cryIAc T2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中, 56个植株表现潮霉素敏感。分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除。  相似文献   

8.
After the initial transformation and tissue culture process is complete, selectable marker genes, which are used in virtually all transformation approaches, are not required for the expression of the gene of interest in the transgenic plants. There are several advantages to removing the selectable marker gene after it is no longer needed, such as enabling the reuse of selectable markers and simplifying transgene arrays. We have tested the Cre/lox system from bacteriophage P1 for its ability to precisely excise stably integrated marker genes from chromosomes in transgenic maize plants. Two strategies, crossing and autoexcision, have been tested and demonstrated. In the crossing strategy, plants expressing the Cre recombinase are crossed with plants bearing a transgene construct in which the selectable marker gene is flanked by directly repeated lox sites. Unlike previous reports in which incomplete somatic and germline excision were common, in our experiments complete somatic and germline marker gene excision occurred in the F1 plants from most crosses with multiple independent Cre and lox lines. In the autoexcision strategy, the cre gene, under the control of a heat shock-inducible promoter, is excised along with the nptII marker gene. Our results show that a transient heat shock treatment of primary transgenic callus is sufficient for inducing cre and excising the cre and nptII genes. Genetic segregation and molecular analysis confirmed that marker gene removal is precise, complete and stable. The autoexcision strategy provides a way of removing the selectable marker gene from callus or other tissues such as embryos and kernels.Communicated by D. Hoisington  相似文献   

9.
Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.  相似文献   

10.
Cre/lox系统通过其Cre重组酶对lox序列进行切割和重新连接,介导lox序列发生特异性重组.利用重组报告基因系统Pactin-lox-hpt-lox-gusA,对Cre/lox系统在水稻(Oryzasativa L.)中介导转基因的剔除进行了研究.Pactin-lox-hpt-lox-gusA系统中选择标记hpt基因侧翼含两个同向lox位点,并位于水稻actinl启动子和gusA基因之间.当hpt在Cre酶作用下被剔除时,actinl启动子可以和gusA基因融合在一起从而驱动GUS表达.通过农杆菌介导获得了分别转cre基因、Pactin-lox-hpt-lox-gusA结构和双价抗虫基因lox-hpt-lox-sck-cryIAc结构的水稻.利用有性杂交方法将cre基因导入到转化lox结构的植株中.在4个转Pactin-lox-hpt-lox-gusA T0植株×转cre T0植株所配组合的30个杂交F1植株中,12个植株表达GUS活性,9个表现潮霉素敏感,表明hpt基因被剔除.研究进一步通过Cre/lox介导剔除转双价抗虫sck cryIAc基因籼稻恢复系明恢86材料基因组中的选择标记hpt基因.在9个转lox-hpt-lox-sck-cryIAcT2代纯合植株×转creT2代纯合植株所配组合的77个杂交F1植株中,56个植株表现潮霉素敏感.分子分析证实在这些对潮霉素敏感的植株中hpt基因已经被剔除.  相似文献   

11.
12.
The elimination of marker genes after selection is recommended for the commercial use of genetically modified plants. We compared the applicability of the two site-specific recombination systems Cre/lox and Flp/FRT for marker gene elimination in maize plants. The selection marker gene pat surrounded by two identically directed lox or FRT sites was introduced into maize. Sexual crossing with plants harboring the corresponding constitutively expressed recombinase led to the precise and complete excision of the lox-flanked marker gene in the F1 progeny, whereas Flp-mediated recombination of FRT sequences occurred rarely. Further examination of site-specific integration was done by biolistic bombardment of immature embryos harboring only one lox site with a lox.uidA sequence with results indicating directed integration.  相似文献   

13.
Marker-gene-free transgenic soybean plants were produced by isolating a developmentally regulated embryo-specific gene promoter, app1, from Arabidopsis and developing a self-activating gene excision system using the P1 bacteriophage Cre/loxP recombination system. To accomplish this, the Cre recombinase gene was placed under control of the app1 promoter and, together with a selectable marker gene (hygromycin phosphotransferase), were cloned between two loxP recombination sites. This entire sequence was then placed between a constitutive promoter and a coding region for either β-glucuronidase (Gus) or glyphosate acetyltransferase (Gat). Gene excision would remove the entire sequence between the two loxP sites and bring the coding region to the constitutive promoter for expression. Using this system marker gene excision occurred in over 30% of the stable transgenic events as indicated by the activation of the gus reporter gene or the gat gene in separate experiments. Transgenic plants with 1 or 2 copies of a functional excision-activated gat transgene and without any marker gene were obtained in T0 or T1 generation. This demonstrates the feasibility of using developmentally controlled promoters to mediate marker excision in soybean.  相似文献   

14.
We have cloned and sequenced an area of about 9.0 kb of the plastid DNA (ptDNA) from the holoparasitic flowering plant Cuscuta reflexa to investigate the evolutionary response of plastid genes to a reduced selective pressure. The region contains genes for the 16S rRNA, a subunit of a plastid NAD(P)H dehydrogenase (ndhB), three transfer RNAs (trnA, trnI, trnV) as well as the gene coding for the ribosomal protein S7 (rps7). While the other genes are strongly conserved in C. reflexa, the ndhB gene is a pseudogene due to many frameshift mutations. In addition we used heterologous gene probes to identify the other ndh genes encoded by the plastid genome in higher plants. No hybridization signals could be obtained, suggesting that these genes are either lost or strongly altered in the ptDNA of C. reflexa. Together with evidence of deleted genes in the ptDNA of C. reflexa, the plastid genome can be grouped into four classes reflecting a different evolutionary rate in each case. The phylogenetic position of Cuscuta and the significance of ndh genes in the plastid genome of higher plants are discussed.  相似文献   

15.
Summary Plastid DNA (ptDNA) in albino rice plants regenerated from pollen by anther culture was investigated by Southern blotting. Of the 20 albino plants investigated, 7 contained ptDNA that had suffered large-scale deletion. The size and location of the deletions differed among the plants. In all cases about 30 kbp of the region containing the PstI-2 fragment (15.7 kbp) had been retained. The deleted ptDNA molecules were retained in calluses derived from the roots of each albino plant.  相似文献   

16.
Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.  相似文献   

17.
Incorporation of a selectable marker gene in the plastid genome is essential to uniformly alter the thousands of genome copies in a tobacco cell. When transformation is accomplished, however, the marker gene becomes undesirable. Here we describe plastid transformation vectors, the method of plastid transformation using tobacco leaves and alternative protocols for marker gene excision with the P1 bacteriophage Cre-loxP site-specific recombination system. Plastid vectors carry a marker gene flanked with directly oriented loxP sites and a gene of interest, which are introduced into plastids by the biolistic process. The transforming DNA integrates into the plastid genome by homologous recombination via plastid targeting sequences. Marker gene excision is accomplished by a plastid-targeted Cre protein expressed from a nuclear gene. Expression may be from an integrated gene introduced by Agrobacterium transformation (Transformation Protocol), by pollination (Pollination Protocol) or from a transient, non-integrated T-DNA (Transient Protocol). Transplastomic plants are obtained in about 3 months, yielding seed after 2 months. The time required to remove the plastid marker and nuclear genes and to obtain seed takes 10-16 months, depending on which protocol is used.  相似文献   

18.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

19.
Plastid marker-gene excision by transiently expressed CRE recombinase   总被引:8,自引:0,他引:8  
We report plastid marker-gene excision with a transiently expressed CRE, site-specific recombinase. This is a novel protocol that enables rapid removal of marker genes from the approximately 10,000 plastid genome copies without transformation of the plant nucleus. Plastid marker excision was tested in tobacco plants transformed with a prototype polycistronic plastid vector, pPRV110L, designed to express multiple genes organized in an operon. The pMHB10 and pMHB11 constructs described here are dicistronic and encode genes for herbicide (bar) and spectinomycin (aadA) resistance. In vector pMHB11, expression of herbicide resistance is dependent on conversion of an ACG codon to an AUG translation initiation codon by mRNA editing, a safety feature that prevents translation of the mRNA in prokaryotes and in the plant nucleus. In the vectors, the marker gene (aadA) is flanked by 34-bp loxP sites for excision by CRE. Marker excision by a transiently expressed CRE involves introduction of CRE in transplastomic leaves by agro-infiltration, followed by plant regeneration. In tobacco transformed with vectors pMHB10 and pMHB11, Southern analysis and PCR identified approximately 10% of the regenerated plants as marker-free.  相似文献   

20.
Luo K  Sun M  Deng W  Xu S 《Biotechnology letters》2008,30(7):1295-1302
To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the 'genetically modified (GM)-gene-deletor' system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, beta-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号