首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
TPK-IIB, a spleen tyrosine protein kinase devoid of autophosphorylation activity (Brunati, A. M., and Pinna, L. A. (1988) Eur. J. Biochem. 172, 451-457), has been purified to near homogeneity and assayed for its ability to phosphorylate the synthetic peptides EDNEYTA and EPQYQPA reproducing the two conserved phosphoacceptor sites of pp60c-src (Tyr-416 and Tyr-527). While EPQYQPA was phosphorylated with low efficiency (Km = 16.7 mM, Kcat = 14.4), EDNEYTA is an excellent substrate displaying a Km value of 58 microM and a Kcat value of 31.2. The single substitution, in the latter peptide, of the glutamic acid adjacent to the tyrosine by alanine to give EDNAYTA caused a 6-fold increase in the Km. The positive influence on the phosphorylation of the acidic residues at -3 and -4 relative to the tyrosine is indicated by comparison of the kinetic constants for peptides EDAAYAA (Kcat = 4.6, Km 0.325 mM) and QNAAYAA (Kcat 2.4, Km 1.7 mM). Furthermore, when residues in the peptide NEYTA were replaced by alanine, the phosphorylation of the peptides NAYTA and AAYAA, was almost negligible (in terms of Kcat/Km ratio). However, AEYTA, NEYAA and AEYAA were still phosphorylated, albeit less efficiently than NEYTA. The probability that these peptides will adopt a beta-turn is EDNAYTA = EDNEYTA, NAYTA greater than NEYTA, and no predicted beta-turn for AEYTA, NEYAA, and AEYAA. Therefore these results support the concept that an amino-terminal acidic residue(s) is strictly required by TPK-IIB, irrespective of peptide conformation, although a beta-turn may enhance the phosphorylation of those peptides that satisfy this requirement. Two other spleen tyrosine kinases, TPK-I/lyn and TPK-III, both related to the src family, also have a far greater preference for the peptide EDNEYTA over EPQYQPA. However, they can be distinguished from TPK-IIB by their lower affinity for the peptides EDNEYTA and NEYTA and by their different specificity towards the substituted derivatives of NEYTA. TPK-I/lyn, accepts most of the substitutions that are detrimental to TPK-IIB, the triply substituted peptide AAYAA being actually preferred over the parent peptide NEYTA. The substitution of glutamic acid by alanine is also tolerated by TPK-III, although, in contrast to TPK-IIB, the phosphorylation efficiency is drastically decreased by the substitution of the asparagine at position -2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
20 synthetic peptides, each of which includes a tyrosyl residue flanked by either neutral or acidic amino acids in different proportions and at variable positions, have been employed as model substrates for investigation of the site specificity of three tyrosine protein kinases previously isolated from spleen [Brunati, A. M. & Pinna, L. A. (1988) Eur. J. Biochem. 172, 451-457] and conventionally termed TPK-I, TPK-IIB and TPK-III. Comparison of the phosphorylation efficiencies shows that each tyrosine protein kinase is considerably different from the others in both the stringency and the nature of its specificity determinants. By considering, in particular, the kinetic constants obtained with the pentapeptides AAYAA, EEYAA, AEYAA, EAYAA, with the tetrapeptides AYAA and EYAA and with the tripeptides AYA and EYA, it turns out that N-terminal acidic residue(s) are only essential with TPK-IIB for efficient phosphorylation with multiple residues displaying a synergistic effect. The very similar Km (130 microM) but 14-fold-different Vmax values with YEEEEE vs. EEEEEY indicate that an N-terminal rather than C-terminal location of acidic residues is required for a high phosphorylation rate with, though not for binding to TPK-IIB. Acidic residues decrease the phosphorylation rate with TPK-I, a kinase related to the src family which is immunologically indistinguishable from the lyn TPK; they are nearly ineffective, however, with TPK-III, the least specific of the tyrosine protein kinases, which exhibits appreciable activity toward tripeptides and dipeptides like GAY and AY which are not significantly affected by TPK-I and TPK-IIB. While the peptide substrate specificity of TPK-I is similar to that of TPK-IIA, a spleen tyrosine protein kinase previously considered [Brunati, A. M., Marchiori, F., Ruzza, P., Calderan, A., Borin, G. & Pinna, L. A. (1989) FEBS Lett. 254, 145-149], the remarkable requirement of TPK-IIB alone for acidic peptides may suggest the involvement of this enzyme, which is also unique in its failure to autophosphorylate, in the phosphorylation of the highly conserved and quite acidic phosphoacceptor sites of the src family protein kinases.  相似文献   

3.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

4.
A peptide derived from p34cdc2, cdc2(6-20)NH2 with the amino acid sequence of KVEKIGEGTYGVVYK-amide, was found to be a specific and efficient substrate for a pp60c-src-related protein tyrosine kinase from bovine spleen (STK). Glu-12 and Thr-14 were identified to be substrate specificity determinants in this peptide (Cheng, H.-C., Litwin, C. M. E., Hwang, D. M., and Wang, J. H. (1991) J. Biol. Chem. 266, 17919-17925). In this study, we demonstrated the presence of cdc2(6-20)NH2 peptide tyrosine kinase activity in the membrane fractions of bovine brain, spleen, thymus, lung, liver, and kidney. Hydroxylapatite column chromatography of thymus membrane extract revealed four protein tyrosine kinases, TK-I, TK-II, TK-III, and TK-IV, with different relative activities toward cdc2(6-20)NH2 and a general tyrosine kinase substrate, poly(Glu/Tyr). Only TK-I and TK-II showed significant activity toward cdc2(6-20)NH2, they were suggested as belonging to the src-family by virtue of their cross-reactivity with an antibody against a synthetic peptide corresponding to a conserved sequence of src-family kinases. Further immunological characterization using antibodies specific to individual src-related protein tyrosine kinases suggested that TK-I, TK-II, and STK are bovine homologs of p56lck, p55fyn, and p56lyn, respectively. Substrate specificity and kinetic characterization of src-family tyrosine kinases including human platelet pp60c-src, bovine p56lyn, p56lck, and p55fyn, as well as several non-src-related tyrosine kinases including epidermal growth factor receptor, p43v-abl, TK-III, and TK-IV showed that all the src-family tyrosine kinases but none of the other kinases displayed efficient cdc2(6-20)NH2 phosphorylation. In all cases, the high efficiency of cdc2(6-20)NH2 peptide phosphorylation could be markedly attenuated when Glu-12 and Thr-14 of the peptide were substituted, respectively, by valine and serine.  相似文献   

5.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

6.
The peptide SAEEEDQYN, corresponding to the carboxyl-terminal tryptic fragment of rat progastrin, whose penultimate tyrosyl residue is sulphated in the native peptide, is phosphorylated with Km values of 120 and 180 microM by two spleen tyrosine protein kinases, termed TPK-IIB and TPK-III, respectively. Another spleen tyrosine protein kinase related to the src family (TPK-I/lyn) is poorly active toward this peptide, displaying a Km 6.5 mM. The Tyr-phosphorylated peptide is recognized by an antibody (L304), which reacts with both sulphated and unmodified peptides, while it is not recognized by a second antibody (L303), which reacts with unmodified peptide yet not with the sulphated derivative. These data, in conjunction with previous observations (Hofsteenge, J., Stone, S.R., Donella-Deana, A. and Pinna, L.A. (1990) Eur. J. Biochem. 188, 55-59) support the view that phosphotyrosine is an effective surrogate for sulphotyrosine in a wide spectrum of biological activities.  相似文献   

7.
The possibility that isoaspartyl residues contribute to the substrate specificity of eucaryotic protein carboxyl methyltransferases and/or tyrosine protein kinases has been investigated with two synthetic oligopeptides, Lys-Gln-Val-Val-Asp/isoAsp-Ser-Ala-Tyr-Glu-Val-Ile-Lys, which correspond to amino acids 231-242 of lactate dehydrogenase. One version of the peptide contains the normal amino acid sequence of the chicken muscle M4 isozyme. The other version contains an isoaspartyl residue in position 235 in place of the normal aspartyl residue; i.e., Asp-235 is linked to Ser-236 via its side-chain beta-carboxyl group, rather than via the usual alpha-carboxyl linkage. The normal peptide corresponds to the sequence around Tyr-238 that is phosphorylated in Rous sarcoma virus infected chick embryo fibroblasts [Cooper, J. A., Esch, F. S., Taylor, S. S., & Hunter, T. (1984) J. Biol Chem. 259, 7835]. Using protein carboxyl methyltransferase purified from bovine brain, we found that the normal peptide did not serve as a methyl-accepting substrate but that the isopeptide served as an excellent substrate, exhibiting a stoichiometry of one methyl group per peptide and Km of 0.54 microM. With tyrosine protein kinase partially purified from normal rat spleen both peptides were found to serve as phosphate acceptors at Tyr-238, exhibiting Km values of 4.7 and 8.9 mM for the normal and isopeptide versions, respectively. These results support the idea that protein carboxyl methyltransferase selectively methylates the alpha-carboxyl group of atypical isoaspartyl residues. In contrast, the presence of isoaspartate had a modest negative effect on substrate activity for a tyrosine protein kinase from rat spleen.  相似文献   

8.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

9.
Cys-cdc2(8-20), a synthetic peptide derived from p34cdc2, was previously reported to be a specific and efficient substrate of a pp60c-src-related tyrosine kinase isolated from bovine spleen (the spleen tyrosine kinase) (Litwin, C.M.E., Cheng, H.-C., and Wang, J.H. (1991) J. Biol. Chem. 266, 2557-2566). The longer peptide, cdc2(1-24), was found to be phosphorylated by the kinase with similar efficiency, and Tyr15 was the only amino acid residue phosphorylated. This indicated that the amino acid sequence of cdc2(8-20) peptide, EKI-GEGTYGVVYK, contained the structural features important for protein tyrosine kinase substrate activity. A stepwise procedure using synthetic peptides was employed to investigate such structural features. First, a computer search of protein sequences homologous to cdc2(8-20) uncovered five protein kinases containing homologous sequence with tyrosine at a position corresponding to Tyr15 of p34cdc2. Second, a peptide derived from ribosomal S6 protein kinase (rsk(436-456] was synthesized. The rsk(436-456) peptide contained a segment, ETIGVGSYSVCKR, which is highly homologous to that of cdc2(8-20). It was found to be a very poor substrate of the spleen tyrosine kinase. Third, peptide analogs of cdc2(6-20) with single substitutions of amino acid residues Lys9, Glu12, Thr14, Gly16, Val18, and Tyr19 by amino acid residues at corresponding positions of rsk were synthesized and tested as spleen tyrosine kinase substrates. Only Glu12 and Thr14 substituted peptide analogs showed decreased substrate activities. (The substrate activity of a peptide is the ability of the peptide to serve as the substrate of the spleen tyrosine kinase. It was determined of the spleen tyrosine kinase. It was determined either by the kinetic parameters (Km and Vmax) of phosphorylation of the peptide or by the initial phosphorylation rate of the peptide by the spleen tyrosine kinase.) An analog with double substitution at Glu12 An analog with double substitution at Glu12 and Thr14 was found to be almost as poor a substrate as the rsk peptide. In addition, peptide analogs with Tyr15 substituted by Phe or D-Tyr had poor substrate activities as well as weak inhibitory activities. Thus, Glu12, Thr14, and Tyr15 residues of p34cdc2 contained structural components essential for the efficient phosphorylation of the peptides derived from p34cdc2 by the pp60c-src-related spleen tyrosine kinase.  相似文献   

10.
Extracts of bakers' yeast (Saccharomyces cerevisiae) contain protein-tyrosine kinase activity that can be detected with a synthetic Glu-Tyr copolymer as substrate (G. Schieven, J. Thorner, and G.S. Martin, Science 231:390-393, 1986). By using this assay in conjunction with ion-exchange and affinity chromatography, a soluble tyrosine kinase activity was purified over 8,000-fold from yeast extracts. The purified activity did not utilize typical substrates for mammalian protein-tyrosine kinases (enolase, casein, and histones). The level of tyrosine kinase activity at all steps of each preparation correlated with the content of a 40-kDa protein (p40). Upon incubation of the most highly purified fractions with Mn-ATP or Mg-ATP, p40 was the only protein phosphorylated on tyrosine. Immunoblotting of purified p40 or total yeast extracts with antiphosphotyrosine antibodies and phosphoamino acid analysis of 32P-labeled yeast proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 40-kDa protein is normally phosphorylated at tyrosine in vivo. 32P-labeled p40 immunoprecipitated from extracts of metabolically labeled cells by affinity-purified anti-p40 antibodies contained both phosphoserine and phosphotyrosine. The gene encoding p40 (YPK1) was cloned from a yeast genomic library by using oligonucleotide probes designed on the basis of the sequence of purified peptides. As deduced from the nucleotide sequence of YPK1, p40 is homologous to known protein kinases, with features that resemble known protein-serine kinases more than known protein-tyrosine kinases. Thus, p40 is a protein kinase which is phosphorylated in vivo and in vitro at both tyrosine and serine residues; it may be a novel type of autophosphorylating tyrosine kinase, a bifunctional (serine/tyrosine-specific) protein kinase, or a serine kinase that is a substrate for an associated tyrosine kinase.  相似文献   

11.
The transforming protein erbB of avian erythroblastosis virus (AEV) has considerable sequence homology with the epidermal growth factor (EGF) and appears to represent a truncated form of this receptor. The sequence of the erbB gene is furthermore related to that of other viral transforming genes such as src, fps, yes or abl. The transforming proteins of these src-related oncogenes as well as receptors for EGF, platelet-derived growth factor (PDGF), and insulin are associated with tyrosine-specific protein kinases. It has been difficult to demonstrate this activity for the erbB protein. To analyze the erbB gene product, we prepared polyclonal antibodies against a bacterially expressed erbB DNA restriction fragment (BamHI/BamHI). The antiserum is shown to immunoprecipitate the erbB protein from AEV-transformed chicken fibroblasts and also recognizes the EGF receptor protein. Both proteins become phosphorylated in vitro on tyrosine residues upon the addition of [gamma-32P]ATP. The protein kinase activity is low compared to other oncogene-specific kinases. This is not due to kinase blocking by the serum, because erbB carboxyterminal synthetic peptide antibodies give rise to low levels of protein kinase activity as well indicating that this may be a characteristic property of erbB in vitro.  相似文献   

12.
Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity.  相似文献   

13.
The sequences contributing to the catalytic site of protein kinases are not all comprised within the highly conserved catalytic core. Thus, in mammalian cAMP-dependent protein kinase (PKA), the C-terminal sequence participates in substrate binding. Using synthetic peptides mimicking the FxxF motif present at most C-termini of AGC kinases, we have raised highly specific antibodies which are potent and specific inhibitors of the catalytic activity of the cognate protein kinase. Taking into account the structure of PKA, these results point to the potential of the C-terminal region of protein kinases as a target for designing specific protein kinase inhibitors.  相似文献   

14.
Brk (breast tumor kinase) is a nonreceptor tyrosine kinase that is most closely related to the Frk family of kinases, and more distantly to Src family kinases. Brk was originally identified in a screen for tyrosine kinases that are overexpressed in human metastatic breast tumors. To shed light on the activity and regulation of Brk and related tyrosine kinases, we expressed and purified Brk using the Sf9/baculovirus system. We characterized the substrate specificity of Brk using synthetic peptides, and we show that the kinetic parameters K(m) and k(cat) both play a role in specificity. We carried out mass spectrometry experiments to show that Brk autophosphorylates within the predicted kinase activation loop and at additional sites in the N terminus. Autophosphorylation increases enzyme activity of wild-type Brk but not of a Y342A mutant form of Brk. We also carried out experiments to address the possible involvement of the Src homology (SH) 2 and SH3 domains of Brk in enzyme regulation. Mutation of a C-terminal tyrosine (Tyr-447) increases enzyme activity and SH2 domain accessibility, consistent with a role for this residue in autoinhibition. A proline-rich peptide activates Brk, suggesting that the SH3 domain is also involved in maintaining an inactive form of Brk. These biochemical results for Brk may aid in the understanding of other tyrosine kinases in the Frk family.  相似文献   

15.
We have previously reported that 14,15-epoxyeicosatrienoic acid (14, 15-EET) is a potent mitogen for the renal epithelial cell line, LLCPKcl4. This mitogenic effect is dependent upon activation of a protein-tyrosine kinase cascade that results in activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Because of suggestive evidence that 14,15-EET also activated Src in these cells, we stably transfected LLCPKcl4 with an expression construct of the C-terminal Src kinase (CSK), which inhibits Src family kinase activity. In vitro Src kinase activity assays confirmed that in empty vector-transfected cells (Vector cells), 14, 15-EET increased Src kinase activity, while in clones overexpressing CSK mRNA and immunoreactive protein (CSK cells), 14,15-EET-induced activation of Src was almost completely blocked (94% inhibition). Of interest, epidermal growth factor (EGF) and fetal bovine serum (FBS) also increased Src activity in Vector cells, but not in CSK cells, further confirming the ability of CSK overexpression to prevent Src activation. CSK cells failed to increase [(3)H]thymidine incorporation in response to exogenous 14,15-EET. In contrast, both EGF and FBS significantly increased [(3)H]thymidine incorporation in CSK cells. Immunoprecipitation with anti-phosphotyrosine antibodies and immunoblotting with an antibody against extracellular signal-regulated kinase (ERK) indicated that in CSK cells, 14,15-EET failed to activate ERK1 and ERK2; however, EGF- and FBS-induced activation of ERKs was not different from that seen in Vector cells. In Vector cells, the 14,15-EET-stimulated tyrosine phosphorylation of ERKs was blocked by pretreatment with 1 microm PP2, a selective inhibitor of Src kinases. The present study demonstrates that 14, 15-EET exerts its mitogenic effects predominantly through a Src kinase-mediated pathway, which is the most upstream signaling step determined to date in the 14,15-EET-activated tyrosine kinase cascade in renal epithelial cells.  相似文献   

16.
In the cells transformed by Rous sarcoma virus (RSV), two Src proteins are expressed: the ubiquitous tyrosine kinase c-Src and the v-Src, the product of the transforming gene of the virus. Using three synthetic peptide substrates widely used for testing Src kinase activity, we show that they are phosphorylated with different efficiencies by the v-Src and c-Src tyrosine kinases immunoprecipitated from the tumor cell line H19. The v-Src displays higher efficiency (Vmax/Km ratio) toward all three peptides used, but the Vmax of v-Src is much lower than Vmax of c-Src with two peptides out of three. This difference in substrate specificity, if ignored, may cause misestimation of the amounts of active c-Src and v-Src in RSV-transformed cells. On the other hand, the different peptide substrate specificities may also reflect different protein substrate specificities of the v-Src and c-Src kinases in vivo.  相似文献   

17.
Macrophage activation by CpG DNA requires toll-like receptor 9 and the adaptor protein MyD88. Gram-negative bacterial lipopolysaccharide also activates macrophages via a toll-like receptor pathway (TLR-4), but we and others have reported that lipopolysaccharide also stimulates tyrosine phosphorylation in macrophages. Herein we report that exposure of RAW 264.7 murine macrophages to CpG DNA (but not non-CpG DNA) provoked the rapid tyrosine phosphorylation of vav1. PP1, a selective inhibitor of src-related tyrosine kinases, blocked both the CpG DNA-mediated tyrosine phosphorylation of vav1 and the CpG DNA-mediated up-regulation of macrophage tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation. Furthermore, we found that the inducible expression of any of three dominant interfering mutants of vav1 (a truncated protein, vavC; a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and a form with an in-frame deletion of six amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt) consistently inhibited CpG DNA-mediated up-regulation of tumor necrosis factor secretion and inducible nitric-oxide synthase protein accumulation in RAW-TT10 macrophages. Finally, we determined that CpG DNA-mediated up-regulation of NF-kappaB activity (but not mitogen-activated protein kinase activation) was inhibited by preincubation with PP1 or by expression of the truncated vavC mutant. Taken together, our results indicate that the tyrosine phosphorylation of vav1 by a src-related tyrosine kinase or kinases plays an important role in the macrophage response to CpG DNA.  相似文献   

18.
The serine/threonine kinase activity of the Raf-1 proto-oncogene product is stimulated by the activation of many tyrosine kinases, including growth factor receptors and pp60v-src. Recent studies of growth factor signal transduction pathways demonstrate that Raf-1 functions downstream of activated tyrosine kinases and p21ras and upstream of mitogen-activated protein kinase. However, coexpression of both activated tyrosine kinases and p21ras is required for maximal activation of Raf-1 in the baculovirus-Sf9 expression system. In this study, we investigated the role of tyrosine kinases and tyrosine phosphorylation in the regulation of Raf-1 activity. Using the baculovirus-Sf9 expression system, we identified Tyr-340 and Tyr-341 as the major tyrosine phosphorylation sites of Raf-1 when coexpressed with activated tyrosine kinases. Introduction of a negatively charged residue that may mimic the effect of phosphorylation at these sites activated the catalytic activity of Raf-1 and generated proteins that could transform BALB/3T3 cells and induce the meiotic maturation of Xenopus oocytes. In contrast, substitution of noncharged residues that were unable to be phosphorylated produced a protein that could not be enzymatically activated by tyrosine kinases and that could block the meiotic maturation of oocytes induced by components of the receptor tyrosine kinase pathway. These findings demonstrate that maturation of the tyrosine phosphorylation sites can dramatically alter the function of Raf-1. In addition, this is the first report that a transforming Raf-1 protein can be generated by a single amino acid substitution.  相似文献   

19.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

20.
Low concentrations of anti-Ig dextran conjugates that stimulate very high levels of B cell proliferation and Ig secretion stimulate no detectable increases in tyrosine phosphorylation. To study this point further, we compared tyrosine phosphorylation patterns induced by mitogenic and nonmitogenic anti-Ig antibodies. Whereas the mitogenic, strongly cross-linking, antibody H delta a/1 induced greater levels of tyrosine phosphorylation than did the nonmitogenic antibody FF1-4D5, the pattern of substrate phosphorylation was equivalent. At lower concentrations of H delta a/1, which were still mitogenic, the degree of phosphorylation that was induced was similar to that induced by high concentrations of FF1-4D5. Both antibodies stimulated comparable increases in the kinase activity of the three src-related kinases present in normal B cells and linked to the IgR, i.e., Blk, Fyn, and Lyn. These results suggest that the extent of tyrosine kinase activation is proportional to mIg cross-linking, that induction of B cell DNA synthesis may require little tyrosine kinase activation, and that activation of tyrosine kinase per se does not necessarily lead to B cell DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号