首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Death receptor-induced programmed cell death (PCD) is crucial for the maintenance of immune homeostasis. However, interference of downstream death receptor signaling by genetic ablation or transgenic (Tg) expression of different apoptosis inhibitors often impairs lymphocyte activation. The viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. We generated Tg mice expressing the v-FLIP MC159 from Molluscum contagiosum virus under the control of the H2Kb class I MHC promoter to examine the role of death receptor-induced PCD in the control of immune functions and homeostasis. We found that expression of MC159 led to lymphoproliferation and autoimmunity as exemplified by T and B lymphocyte expansion, accumulation of TCRalphabeta+ CD3+ B220+ CD4- CD8- lymphocytes in secondary lymphoid organs, elevated serum Ig levels, and increased anti-dsDNA Ab titers. These phenotypes were caused by defective death receptor-induced apoptosis, but not by defective passive cell death in the absence of mitogenic stimulation. Lymphocyte activation was normal, as demonstrated by normal thymidine incorporation and CSFE dilution of T cells stimulated with anti-CD3 and anti-CD28 Abs. In addition, effector CD8+ T cell responses to acute and memory lymphocytic choriomeningitis virus infections were unaffected in the Tg mice. These phenotypes are reminiscent of the lpr and gld mice, and show that the v-FLIP MC159 is a bona fide PCD inhibitor that does not interfere with other essential lymphocyte functions. Thus, the MC159-Tg mice provide a model to study the effects of PCD in immune responses without hampering other important lymphocyte functions.  相似文献   

2.
It is now well established that viral infections can induce large expansions of Ag-specific CD8(+) T cells. These cells divide very rapidly with an estimated doubling time of approximately 6 h. When virus is cleared, the vast majority of these effector CD8 T cells undergo apoptosis. The remaining memory cells persist at constant levels and provide the basis for the accelerated recall response upon rechallenge. The molecular mechanisms that control the rapid proliferation and death of Ag-specific T cells are poorly understood. Because of its important role in controlling cell proliferation and death, we examined antiviral immune responses in p53(-/-) mice using lymphocytic choriomeningitis virus. We found that effector CD8 and CD4 responses were comparable but that memory levels were slightly higher in -/- mice compared with +/+ mice. The lack of a major difference in virus-specific T cell responses between +/+ and -/- mice suggests that p53 only plays a minor role in regulating the proliferation, apoptosis, and maintenance of Ag-specific T cells. Thus, it appears that the primary function of p53 is in controlling "illegitimate" proliferation and tumor development and not in regulating Ag-specific T cell responses.  相似文献   

3.
Gene expression in antigen-specific CD8+ T cells during viral infection   总被引:3,自引:0,他引:3  
Following infection with intracellular pathogens, Ag-specific CD8(+) T cells become activated and begin to proliferate. As these cells become activated, they elaborate effector functions including cytokine production and cytolysis. After the infection has been cleared, the immune system returns to homeostasis through apoptosis of the majority of the Ag-specific effector cells. The surviving memory cells can persist for extended periods and provide protection against reinfection. Little is known about the changes in gene expression as Ag-specific cells progress through these stages of development, i.e., naive to effector to memory. Using recombinant MHC class I tetramers, we isolated Ag-specific CD8(+) T cells from mice infected with lymphocytic choriomeningitis virus at various time points and performed semiquantitative RT-PCR. We examined expression of: 1) genes involved in cell cycle control, 2) effector and regulatory functions, and 3) susceptibility to apoptosis. We found that Ag-specific CD8(+) memory T cells contain high steady-state levels of Bcl-2, BAX:, IFN-gamma, and lung Kruppel-like factor (LKLF), and decreased levels of p21 and p27 mRNA. Moreover, the pattern of gene expression between naive and memory cells is distinct and suggests that these two cell types control susceptibility to apoptosis through different mechanisms.  相似文献   

4.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

5.
Fully functional CD8(+) T cell memory is highly dependent upon CD4(+) T cell support. CD4(+) T cells play a critical role in inducing the expression of CD70, the ligand for CD27, on dendritic cells. In this study, we demonstrate that CD27 stimulation during primary CD8(+) T cell responses regulates the ability to mount secondary CD8(+) T cell responses. CD27 stimulation during vaccinia and dendritic cell immunization controls the expression of the IL-7R (CD127), which has been shown to be necessary for memory CD8(+) T cell survival. Furthermore, CD27 stimulation during primary CD8(+) T cell responses to vaccinia virus restrained the late expression on memory precursor cells of cytokine receptors that support terminal differentiation. The formation of CD8(+) T cell memory precursors and secondary CD8(+) T cell responses was restored in the absence of CD27 costimulation when endogenous IL-12 was not available. Similarly, the lesion in CD8(+) T cell memory that occurs in the absence of CD4(+) T cells did not occur in mice lacking IL-12. These data indicate that CD4(+) T cell help and, by extension, CD27 stimulation support CD8(+) T cell memory by modulating the expression of cytokine receptors that influence the differentiation and survival of memory CD8(+) T cells.  相似文献   

6.
7.
Dynamics of T cell responses in HIV infection   总被引:14,自引:0,他引:14  
Cytotoxic CD8(+) T cells play a major role in the immune response against viruses. However, the dynamics of CD8(+) T cell responses during the course of a human infection are not well understood. Using tetrameric complexes in combination with a range of intracellular and extracellular markers, we present a detailed analysis of the changes in activation and differentiation undergone by Ag-specific CD8(+) T cells, in relation to Ag-specific CD4(+) T cell responses, in the context of a human infection: HIV-1. During primary HIV-1 infection, the initial population of HIV-specific CD8(+) T cells is highly activated and prone to apoptosis. The Ag-specific cells differentiate rapidly from naive to cells at a perforin low intermediate stage of differentiation, later forming a stable pool of resting cells as viral load decreases during chronic infection. These observations have significant implications for our understanding of T cell responses in human viral infections in general and indicate that the definition of effector and memory subsets in humans may need revision.  相似文献   

8.
Ag-specific CD8(+) T cells immunized in the absence of CD4(+) T cell help, so-called "unhelped" CD8(+) T cells, are defective in function and survival. We investigated the role of the proapoptotic molecule TRAIL in this defect. We first demonstrate that TRAIL does not contribute to the CD8(+) T cell response to Listeria monocytogenes strain expressing OVA (LmOVA) in the presence of CD4(+) T cells. Secondly, we generated mice doubly deficient in CD4(+) T cells and TRAIL and analyzed their CD8(+) T cell response to LmOVA. Memory CD8(+) T cells in double-deficient mice waned over time and were not protective against rechallenge, similar to their TRAIL-sufficient unhelped counterparts. To avoid the effects of CD4(+) T cell deficiency during memory maintenance, and to address whether TRAIL plays a role in the early programming of the CD8(+) T cell response, we performed experiments using heterologous prime and early boost immunizations. We did not observe activation-induced cell death of unhelped CD8(+) T cells when mice were infected with followed vaccinia virus expressing OVA 9 days later by LmOVA infection. Furthermore, primary immunization of CD4(+) T cell-deficient mice with cell-associated Ag followed by LmOVA infection did not reveal a role for TRAIL-mediated activation-induced cell death. Overall, our results suggest that CD4(+) T cell help for the CD8(+) T cell response is not contingent on the silencing of TRAIL expression and prevention of TRAIL-mediated apoptosis.  相似文献   

9.
NK cells express several families of receptors that play central roles in target cell recognition. These NK cell receptors are also expressed by certain memory phenotype CD8(+) T cells, and in some cases are up-regulated in T cells responding to viral infection. To determine how the profile of NK receptor expression changes in murine CD8(+) T cells as they respond to intracellular pathogens, we used class I tetramer reagents to directly examine Ag-specific T cells during lymphocytic choriomeningitis virus and Listeria monocytogenes infections. We found that the majority of pathogen-specific CD8(+) T cells initiated expression of the inhibitory CD94/NKG2A heterodimer, the KLRG1 receptor, and a novel murine NK cell marker (10D7); conversely, very few Ag-specific T cells expressed Ly49 family members. The up-regulation of these receptors was independent of IL-15 and persisted long after clearance of the pathogen. The expression of CD94/NKG2A was rapidly initiated in naive CD8(+) T cells responding to peptide Ags in vitro and on many of the naive T cells that proliferate when transferred into lymphopenic (Rag-1(-/-)) hosts. Thus, CD94/NKG2A expression is a common consequence of CD8(+) T cell activation. Binding of the CD94/NKG2A receptor by its ligand (Qa-1(b)) did not significantly inhibit CD8(+) T cell effector functions. However, expression of CD94 and NKG2A transgenes partially inhibited early events of T cell activation. These subtle effects suggest that CD94/NKG2A-mediated inhibition of T cells may be limited to particular circumstances or may synergize with other receptors that are similarly up-regulated.  相似文献   

10.
CD8(+) T cells respond to IL-2 produced both endogenously and by CD4(+) Th during an antiviral response. However, IL-2R signals can potentially promote CD8(+) T cell death as well as proliferation, making it unclear whether IL-2R signals provide a predominantly positive or negative effect upon CD8(+) T cell responses to viral infection. To more precisely define the direct role of IL-2R signaling on CD8(+) T cells during the response to a virus, we examined the effect of delivering augmented IL-2R signals selectively to CD8(+) T cells responding to lymphocytic choriomeningitis virus infection. Although naive CD8(+) T cells are competent to produce IL-2, CD8(+) T cells lose this capacity upon differentiation into effector CD8(+) T cells. However, effector CD8(+) T cells do retain the capacity to produce GM-CSF upon Ag stimulation. Thus, to deliver enhanced autocrine IL-2R signals to CD8(+) T cells, we established a transgenic mouse strain expressing a chimeric GM-CSF/IL-2R (GMIL2R). As GM-CSF production is Ag dependent, the GMIL2R delivers an augmented IL-2R signal exclusively to CD8(+) T cells responding to Ag. Following lymphocytic choriomeningitis virus infection, GMIL2R transgenic mice exhibited an increase in both the peak CD8(+) T cell response achieved and the size of the resulting memory pool established. Upon secondary viral challenge, the GMIL2R also enhanced the proliferative response of memory CD8(+) T cells. Thus, our findings indicate that IL-2 delivery to responding CD8(+) T cells is a limiting factor in both the acute and memory antiviral responses.  相似文献   

11.
Central memory CD8(+) T cells (T(CM)) are considered to be more efficient than effector ones (T(EM)) for mediating protective immunity. The molecular mechanism involved in the generation of these cells remains elusive. Because Bcl6 plays a role in the generation and maintenance of memory CD8(+) T cells, we further examined this role in the process in relation to T(CM) and T(EM) subsets. In this study, we show that T(CM) and T(EM) were functionally identified in CD62L(+) and CD62L(-) memory (CD44(+)Ly6C(+)) CD8(+) T cell subsets, respectively. Although T(CM) produced similar amounts of IFN-gamma and IL-2 to T(EM) after anti-CD3 stimulation, the cell proliferation capacity after stimulation and tissue distribution profiles of T(CM) differed from those of T(EM). Numbers of T(CM) were greatly reduced and elevated in spleens of Bcl6-deficient and lck-Bcl6 transgenic mice, respectively, and those of T(EM) were constant in nonlymphoid organs of these same mice. The majority of Ag-specific memory CD8(+) T cells in spleens of these mice 10 wk after immunization were T(CM), and the number correlated with Bcl6 expression in T cells. The proliferation of Ag-specific memory CD8(+) T cells upon secondary stimulation was dramatically up-regulated in lck-Bcl6 transgenic mice, and the adoptive transfer experiments with Ag-specific naive CD8(+) T cells demonstrated that some of the up-regulation was due to the intrinsic effect of Bcl6 in the T cells. Thus, Bcl6 is apparently a crucial factor for the generation and secondary expansion of T(CM).  相似文献   

12.
Identifying and characterizing Ag-specific CD8+ T cells are central to the study of immunological memory. Although powerful strategies such as MHC tetramers and peptide-induced cytokine production assays exist for identifying Ag-specific CD8+ T cells, alternate strategies that are not dependent upon a priori knowledge of the immunodominant and subdominant antigenic epitopes, as well as the MHC background of the animal are of obvious utility. In this study, we present a transgenic mouse model that uses Cre-loxP recombination to permanently mark all activated CD8+ T cells with beta-galactosidase. We used the lymphocytic choriomeningitis virus infection model to track the dynamics of the antiviral CD8+ T cell responses. We show that in this transgenic mouse model system, all of the antiviral effector and memory CD8+ T cells are contained within the beta-gal-marked CD8+ T cell population.  相似文献   

13.
The effectiveness of protection conferred by CD8(+) memory T cells is determined by both their quality and their quantity, which suggests that vaccine efficacy might be improved if it were possible to increase the size of the memory pool. Approximately 90% of virus-specific CD8(+) T cells die during the contraction phase and, herein, we have attempted to increase the memory pool by reducing CD8(+) T cell death. CD8(+) T cell contraction has been attributed to apoptosis, or programmed cell death (PCD), which, classically, is dependent on caspases. Caspase-dependent PCD can be prevented by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethylketone (zVAD), and here we evaluate the effect of this compound on virus-specific T cell responses in mice. zVAD prevented caspase-dependent PCD of freshly isolated virus-specific T cells in tissue culture, and a fluorescent analog, FITC-VAD, entered CD8(+) T cells following in vivo injection. However, despite using 11 different regimens of zVAD administration in vivo, no significant effects on CD8(+) or CD4(+) memory T cell numbers were observed. Furthermore, the CD8(+) memory T cell responses to secondary virus infection were indistinguishable, both qualitatively and quantitatively, in zVAD-treated and normal mice. The absence of effect cannot be attributed to a technical flaw, because identical doses of zVAD were able to rescue mice from hepatocyte apoptosis and lethal intrahepatic hemorrhage, induced by inoculation of anti-Fas Ab. We conclude that the contraction phase of the virus-specific T cell response is unlikely to require caspase-dependent PCD. We propose that contraction can be mediated by an alternative, caspase-independent pathway(s).  相似文献   

14.
Immunologic memory involving CD8(+) T cells is a hallmark of an adaptive Ag-specific immune response and constitutes a critical component of protective immunity. Designing approaches that enhance long-term T cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the Ag-specific T cell response has led to new approaches that target the magnitude and quality of the memory T cell response. In this article, we show that T cells from TCR transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases--priming, expansion, contraction, and memory--of an Ag-specific T cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62L(high)/CD44(high) central memory CD8(+) T cells and IFN-γ production but suppressed immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases but were accompanied by Akt-mammalian target of rapamycin suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8(+) T cells by a low dose of saracatinib might afford better protection from pathogens or cancer when combined with vaccine.  相似文献   

15.
Ag-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8(+) T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4(+) T cell precursor frequency following transplantation might affect CD4(+) T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8(+) T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4(+) T cells were transferred into skin graft recipients, we observed that a critical CD4(+) T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8(+) T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8(+) T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4(+) T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4(+) T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help.  相似文献   

16.
The relative contributions of CD62L(high) (central) memory and CD62L(low) (effector) memory T cell populations to recall responses are poorly understood, especially in the respiratory tract. In this study, we took advantage of a dual-adoptive transfer system in the mouse to simultaneously follow the recall response of effector and central memory subpopulations to intranasal parainfluenza virus infection. Using MHC class I and class II multimers, we tracked the responses of Ag-specific CD8(+) and CD4(+) memory T cells in the same animals. The data show that effector memory T cells mounted recall responses that were equal to, or greater than, those mounted by central memory T cells. Moreover, effector memory T cells were more efficient at subsequently establishing a second generation of memory T cells. These data contrast with other studies indicating that central memory CD8(+) T cells are the prominent contributors to systemic virus infections.  相似文献   

17.
Naive CD8(+) T cells are activated on encounter with Ag presented on dendritic cells and proliferate rapidly. To investigate the regulation of naive CD8(+) T cells proliferation, we adoptively transferred TCR-transgenic CD8(+) T cells into intact mice together with Ag-pulsed dendritic cells. Regardless of the number of cells initially transferred, the expansion of activated Ag-specific CD8(+) T cells was limited to a ceiling of effector cells. This limit was reached from a wide range of T cell doses, including a physiological number of precursor cells, and was not altered by changing the amount of Ag or APCs. The total Ag-specific response was composed of similar numbers of host and donor transgenic cells regardless of donor cell input, suggesting that these populations were independently regulated. Regulation of the transgenic donor cell population was TCR specific. We hypothesize that a clone-specific regulatory mechanism controls the extent of CD8(+) T cell responses to Ag.  相似文献   

18.
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.  相似文献   

19.
20.
Although the adaptive immune system has a remarkable ability to mount rapid recall responses to previously encountered pathogens, the cellular and molecular signals necessary for memory CD8(+) T cell reactivation are poorly defined. IL-15 plays a critical role in memory CD8(+) T cell survival; however, whether IL-15 is also involved in memory CD8(+) T cell reactivation is presently unclear. Using artificial Ag-presenting surfaces prepared on cell-sized microspheres, we specifically addressed the role of IL-15 transpresentation on mouse CD8(+) T cell activation in the complete absence of additional stimulatory signals. In this study we demonstrate that transpresented IL-15 is significantly more effective than soluble IL-15 in augmenting anti-CD3epsilon-induced proliferation and effector molecule expression by CD8(+) T cells. Importantly, IL-15 transpresentation and TCR ligation by anti-CD3epsilon or peptide MHC complexes exhibited synergism in stimulating CD8(+) T cell responses. In agreement with previous studies, we found that transpresented IL-15 preferentially stimulated memory phenotype CD8(+) T cells; however, in pursuing this further, we found that central memory (T(CM)) and effector memory (T(EM)) CD8(+) T cells responded differentially to transpresented IL-15. T(CM) CD8(+) T cells undergo Ag-independent proliferation in response to transpresented IL-15 alone, whereas T(EM) CD8(+) T cells are relatively unresponsive to transpresented IL-15. Furthermore, upon Ag-specific stimulation, T(CM) CD8(+) T cell responses are enhanced by IL-15 transpresentation, whereas T(EM) CD8(+) T cell responses are only slightly affected, both in vitro and in vivo. Thus, our findings distinguish the role of IL-15 transpresentation in the stimulation of distinct memory CD8(+) T cell subsets, and they also have implications for ex vivo reactivation and expansion of Ag-experienced CD8(+) T cells for immunotherapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号