首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased contractility in vascular smooth muscle of dystrophic hamsters   总被引:1,自引:0,他引:1  
To investigate the "vascular" hypothesis of muscular dystrophy, the sensitivity and contractility of aortic spiral strips of dystrophic (BIO 14.6) and normal (FIB) hamsters have been determined to various smooth muscle agonists. The results obtained with cumulative dose-response curves show that there is no increase in the sensitivity of the dystrophic compared with the normal aorta to noradrenaline, phenylephrine, isoproterenol, histamine, or 5-hydroxytryptamine. However, there was a significant increase in the force generated by aortic strips of the dystrophic animals to all agonists. Determination of noncollagen and collagen protein showed that there was no difference in the relative proportions of these proteins in the aortas from the two strains. The results show that in this animal model of dystrophy an increased response to vasopressor amines occurs and is in accordance with that expected of the vascular hypothesis.  相似文献   

2.
Thyrotoxicosis in rabbits was induced by prolonged intraperitoneal injection of L-thyroxin. The development of thyroxicosis was assoiated with a decreased Ca2+ accumulation rate by sarcoplasmic reticulum (SR) fragments and a lowered Ca2+ dependent ATPase activity. As compared to the analogous parameters in normal animals. Ca2+ accumulation rate and ATPase activity of thyrotoxicosis animals decreased by 60 and 25%, respectively. The changes in the specific parameters of SR were also observed during incubation of normal SR samples in the medium containing thyroxin (10-5 M). The changes seen in SR functioning in thyrotoxicosis animals are likely to be related to structural rearrangements of lipoprotein surroundings of Ca-ATPase.  相似文献   

3.
The activity and diurnal variation of 3-hydroxy-3-methyglutaryl-CoA reductase (EC 1.1.1.34; HMG-CoA reductase), the rate-limiting enzyme in the cholesterol-biosynthetic pathway, of normal and dystrophic hamsters was determined. Liver enzyme activity showed a diurnal pattern in the normal male, but not in the dystrophic male. Enzyme values in normal males at the midpoint of the 12 h dark period were 10 times those in dystrophic males. No evidence for diurnal variation in the HMG-CoA reductase of the brain was observed, and similar activities were found for normal and dystrophic animals. The apparent Km for HMG-CoA reductase from the liver of normal or dystrophic hamsters was approx. 9 microM, and the Vmax. was 5.9 and 21.7 pmol/min per mg of protein for dystrophic and normal hamsters respectively.  相似文献   

4.
S J Sulakhe  P V Sulakhe 《Enzyme》1979,24(2):137-140
A simple, rapid and reliable procedure of tissue preparation was devised to estimate glycogen phosphorylase activity in cardiac and skeletal muscle of normal and genetically dystrophic Syrian hamsters of various ages. Total phosphorylase activities of dystrophic skeletal muscle, compared to normal, were reduced. Except for the case of heart from the younger dystrophic animals (45 days old), in which higher phosphorylase activity was noted, hearts from dystrophic hamsters, compared to normal, also showed reduced phosphorylase activities. There were, however, no significances in the ratios of phosphorylase alpha to total phosphorylase between the normal and dystrophic tissues.  相似文献   

5.
The cholinoacetyltransferase activity (CAT) in diaphragm of mice of Bar Harbor strain (129 ReJ dy/dy) with muscular dystrophy was significantly lower than that of phenotypically normal litter mates (129 ReJ dy/+). CAT, tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH) activities were found identical in adrenal gland and brain homogenates of normal and dystrophic mice. Subacute injections of atropine (72 μmol/kg i. p., twice daily for 3 days) failed to increase the activity of adrenal CAT in dystrophic mice but increased this enzyme activity in adrenals of normal litter mates. The concentration in brain of dopamine, norepinephrine, serotonin, acetylcholine (ACh), γ-aminobutyric acid (GABA) and some of their precursors were measured. Only the concentration of ACh was significantly lower in the brain of muscular dystrophic mice. The rate of accumulation of brain ACh concentration after the injection of oxotremorine (5μmol/kg i. p.) is slower in muscular dystrophic animals than in normal litter mates. Furthermore, the turnover rate of ACh in total brain was slower in muscular dystrophic mice than in phenotypically normal litter mates. The turnover rate of brain dopamine and norepinephrine in these 2 groups of animals was similar.  相似文献   

6.
Summary The activity of acid phosphatase in skeletal muscle fibres of the plantaris and soleus of normal and dystrophic male hamsters was quantified using a histochemical post-coupling semipermeable membrane technique. Althoug the absolute levels of activity were found to vary widely from one animal to another, the ratio of the mean activities in the two muscles in each animal was virtually constant. In normal muscles, the ratio was about 0.73 and in dystrophic muscles, about 0.77. The activity in plantaris muscle fibres was always significantly lower than that in the corresponding soleus fibres, and in normal fibres compared to dystrophic ones. Another difference was that in normal fibres the mean activity declined to a constant level in mature animals older than about 3 months. In contrast, the activity in dystrophic muscles appeared to fall exponentially throughout life. The functional significance of these findings is discussed.In honour of Prof. P. van Duijn  相似文献   

7.
The activity of acid phosphatase in skeletal muscle fibres of the plantaris and soleus of normal and dystrophic male hamsters was quantified using a histochemical post-coupling semipermeable membrane technique. Although the absolute levels of activity were found to vary widely from one animal to another, the ratio of the mean activities in the two muscles in each animal was virtually constant. In normal muscles, the ratio was about 0.73 and in dystrophic muscles, about 0.77. The activity in plantaris muscle fibres was always significantly lower than that in the corresponding soleus fibres, and in normal fibres compared to dystrophic ones. Another difference was that in normal fibres the mean activity declined to a constant level in mature animals older than about 3 months. In contrast, the activity in dystrophic muscles appeared to fall exponentially throughout life. The functional significance of these findings is discussed.  相似文献   

8.
In studies of glucose oxidation in white retroperitoneal adipose tissue of BIO 14.6 dystrophic and F1B normal hamsters aged 55-67 and 368-379 days, no difference was found in the basal state of radiolabelled 14CO2 production using either D-[6-14C]glucose or D-[1-14C]glucose. When C6-labelled glucose was used, insulin induced a slightly greater increase in glucose oxidation in dystrophic adipose tissue at both ages. When C1-labelled glucose was used, insulin enhanced glucose oxidation in dystrophic tissue more than twice normal in tissues from young animals and five times normal in tissues from the old ones. The increase in oxidation with D-[1-14C]glucose likely represents enhanced activity of the pentose phosphate pathway, which has also been observed in certain tissues of other animals with inherited skeletal-muscle degeneration. The change can probably be classified as being compensatory, an attempt by tissues to maintain functional integrity.  相似文献   

9.
With the aid of histochemical and electrophoretic techniques activities for esterase and esterprotease were investigated in the digastric and masseter muscles from normal and dystrophic mice. The substrates used were -naphthyl acetate and N-acetyl-l-alanine -naphthyl ester. According to the microscopic observations of the dystrophic muscles the histopathological changes in the masseter muscle were much more pronounced than in the digastric muscle. The connective tissue surrounding the myofibers of the dystrophic masseter contained a large number of cells with pronounced enzyme activity. Among them were mast cells that were strongly stained for esterprotease. The connective tissue of the dystrophic digastricus was much less infiltrated with cellular elements reacting for esterprotease. In zymograms the normal digastricus, the dystrophic masseter and the dystrophic digastricus showed a strong activity for certain isoenzymes that were absent or weakly expressed in the normal masseter.This study was supported by grand No. 12-6516 from the Danish Medical Research Council  相似文献   

10.
The nucleic acid metabolism of various tissues of normal and dystrophic hamsters has been studied as a function of animal age and progression of the disease. Muscle weights were significantly heavier in the dystrophic animals at 98 and 225 days, but not 28 days after birth. DNA synthesis and the concentrations of DNA and RNA were markedly higher in the dystrophic diaphragm, soleus and extensor digitorum longus muscles after 28 days of age. The dystrophic process appears to be specific to muscle, since the nucleic acid metabolism of the kidney was unaffected.  相似文献   

11.
LHRH-stimulated LH and FSH secretion was studied in hemipituitaries, in vitro, obtained from several dystrophic mouse mutants (male: 129/ReJ-dy; 129B6F1/J-dy; C57BL/6J-dy and C57BL/6J-dy2J; female: 129B6F1/J-dy) and a dystrophic hamster mutant (male and female CHF-147). Without exception, pituitary tissue from dystrophic animals released significantly more FSH than did tissue obtained from controls. LH secretion was more variable; in the male mice released was inhibited, whereas in the male dystrophic hamsters secretion was elevated above normal. The female mouse mutant pituitary released more LH whereas in the female hamster LH secretion was normal. The reduction in body weight of the mutants studied could have contributed to the observations of impaired anterior pituitary function.  相似文献   

12.
Previously administration of thyroxine (T4) to dystrophic hamsters improved ventilation and slowed the progression of the disease. We hypothesized that the normalization of ventilation in these animals was due to T4 improving structural and functional characteristics of the diaphragm. In the present study, contractile characteristics of the diaphragm and the extensor digitorum longus (EDL) from normal and dystrophic hamsters were evaluated after two months of T4 treatment. Compared to their placebo-treated counterparts, diaphragms and EDLs of T4-treated normal hamsters showed increased optimal muscle lengths and twitch tension, decreased contraction times and increased fatigability. T4-treatment in dystrophic hamsters showed only an increase in diaphragmatic twitch tension development. Force-frequency curves before treatment were generally higher for the normal compared to dystrophic diaphragms and EDLs. T4 administration only increased the force in normal diaphragms at the lower frequencies and in the EDLs at the higher frequencies. Although T4 serum levels were increased in both T4-treated groups, triiodothyronine (T3) was much lower in the dystrophic compared to normal hamsters, suggesting that conversion of T4 to T3 was reduced in dystrophic hamsters. We conclude that the limited functional changes in the diaphragms of T4-treated dystrophic hamsters cannot account for the marked improvement in ventilation previously reported.  相似文献   

13.
1. The incorporation of amino acids into hindleg muscle proteins of normal and dystrophic mice was measured (1/2)h to 16 days after administration of the radioactive pulse. 2. Dystrophic animals showed a faster initial rate of incorporation into total and soluble proteins in the first few hours after injection, but the extent of incorporation relative to the size of the amino acid pool was similar in both. There was little difference between the overall degradation rates although this started later in the dystrophic proteins. An initial fast phase of degradation reached a plateau after 3 days whereupon the residual label in the protein remained constant up to 16 days after injection. 3. Analyses of individual radioactive proteins fractionated by polyacrylamide-gel electrophoresis showed that the distribution of label was similar in all the soluble proteins from normal and dystrophic muscle. Time-course experiments revealed that in dystrophic mice the two major soluble proteins of the muscle, creatine kinase and adenylate kinase, initially incorporated 2-3 times more label relative to the initial size of the precursor pool. This label was then lost equally rapidly and the final plateau value was much less than that in normal mice. This initial peak of activity was not observed in normal mice. 4. A group of dehydrogenases showed similar initial turnover patterns in both dystrophic and normal mice but the final plateau value was much higher in the former. 5. The results provide support for the hypothesis that there is no obvious defect in the protein synthetic machinery of dystrophic muscle. However, certain proteins do show anomalous turnover patterns relative to those in normal animals. A single structural gene mutation giving rise to one particularly unstable and readily degradable muscle protein is excluded as the cause of the dystrophy.  相似文献   

14.
To search for potentially mutant proteins, we have investigated erythrocyte ghost proteins from normal and dystrophic hamster by two-dimensional gel electrophoresis. No significant differences are observed between dystrophic and normal erythrocytes in their peptide patterns on SDS-polyacrylamide gel electrophoresis while on two-dimensional gels a protein spot of approximate Mr 20 000 with an approximate isoelectric point of 4.5 is found in erythrocytes from dystrophic animals and is consistently absent in normal erythrocytes. A large population of erythrocyte (60%) from dystrophic hamsters shows distorted shape as visualized by scanning electron microscopy. The nature of this protein and its relevance in hamster muscular dystrophy are at present not known.  相似文献   

15.
The specific radioactivity of [3H]Leu in the extracellular, intracellular, and Leu-tRNA pools of normal (white leghorn) and dystrophic (line 307) embryonic chick breast muscle cultures was analyzed as a function of equilibration time and extracellular Leu concentration (0.05-5 mM). The primary results were the following 1) [3H]Leu equilibrated to a constant specific radioactivity in the intracellular and Leu-tRNA pools within 2 min after addition to both normal and dystrophic cultures. 2) After equilibration, the extracellular [3H] Leu specific radioactivity in dystrophic cell culture medium was lower than that of medium exposed to normal cells (especially at low Leu concentrations), probably because of increased release of unlabeled Leu from the dystrophic cells as a result of faster protein breakdown. Accordingly, the specific radioactivities in the intracellular and the Leu-tRNA pools were also lower in dystrophic cells. 3) At 5 mM extracellular Leu, the specific radioactivity in the Leu-tRNA pool was approximately 40% lower than the specific radioactivity in the intracellular pool in both normal and dystrophic cells. Thus, high concentrations of extracellular Leu cannot be used to "flood out" reutilization of unlabeled Leu (released by protein degradation) during protein synthesis. 4) At 5.0 mM extracellular Leu, the specific radioactivity of [3H]Leu in the intracellular pool was comparable to that in the extracellular pool in normal and dystrophic cells; however, the specific radioactivity of Leu-tRNA (i.e. the immediate precursor to protein synthesis) was only 55-65% of the extracellular specific radioactivity in normal and dystrophic cells. In conclusion, reutilization of Leu from protein degradation is higher in dystrophic muscle cell cultures than in normal muscle cell cultures, and accurate rates of protein synthesis in cell cultures can only be obtained if specific radioactivity of amino acid in tRNA is measured.  相似文献   

16.
Compared to that of genetically-related normal chickens, pectoralis muscle from the dystrophic chicken contained increased calmodulin measured by radioimmunoassay. Determined by the dot blot procedure, expression of the calmodulin gene was enhanced in muscle from affected animals. The bioactivity of the gene product was normal. Together with previous studies reporting increased cell Ca2+ content in dystrophic muscle, the current findings of increased sarcoplasmic calmodulin suggest the latter is a cellular response to defective Ca2+ transport at the level of cell efflux or intracellular organelle (sarcoplasmic reticulum) uptake.  相似文献   

17.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.  相似文献   

18.
The ability of dystrophic hamsters to maintain their body temperature despite abnormal muscle and brown adipose tissue, two organs involved in thermoregulation, was evaluated. Dystrophic hamsters (CHF 146) between the ages of 30 and 160 days kept at 21 degrees C had core (rectal) temperatures (TR) that were 0.5-1.5 degrees C lower than Golden Syrian controls. The reduced core temperatures of dystrophic hamsters were unlikely the result of an incapacity to generate heat since the dystrophic hamsters were able to maintain their TRs during 3 h of acute cold stress (4 degrees C) and to adapt to prolonged cold exposure. However, TRs of cold-acclimated dystrophic hamsters were still 1 degree C below TRs of cold-acclimated control animals. By contrast, increasing the ambient temperature raised TRs of both normal and dystrophic hamsters. When kept at 32 degrees C overnight, the TRs of dystrophic hamsters remained significantly below those of control animals. When heat-exposed dystrophic hamsters were returned to 21 degrees C, their TRs returned to values significantly lower than those of control hamsters. Thus, dystrophic hamsters showed a capacity to thermoregulate, like control hamsters, but appeared to do so at a lower temperature. The reduced core temperatures of dystrophic hamsters kept at 21 degrees C cannot be explained by a reduction in metabolic activity since newborns and 30- and 140-day-old dystrophic hamsters had rates of oxygen consumption (VO2) and carbon dioxide production (VCO2) that were similar to those of controls. These results suggest that the thermoregulatory set point may be altered in dystrophic hamsters.  相似文献   

19.
Fasting for 36-48 h or food restriction (30% reduction of daily food intake for 6 weeks) caused brown adipose tissue (BAT) atrophy in hamsters. Fasting-induced atrophy was characterized by reductions in tissue mass, DNA, protein, and thermogenin. By contrast, food restriction had no effect on tissue cellularity (DNA) but markedly reduced the tissue protein and thermogenin contents. The concentration of thermogenin in isolated mitochondria was unchanged by fasting or food restriction. Dystrophic hamsters had a reduced BAT mass when compared with weight-matched control hamsters. This resulted from a reduction in tissue cellularity since BAT DNA, protein and thermogenin contents were all reduced. The extent of binding of [3H]guanosine diphosphate to isolated mitochondria and their content of thermogenin were similar in normal and dystrophic hamsters. In response to cold exposure, as in normal hamsters, BAT of dystrophic hamsters grew and the tissue thermogenin increased, but the mitochondrial concentration of thermogenin did not change. In response to fasting, in contrast with normal hamsters, there was no significant reduction in BAT DNA in dystrophic animals and the loss of tissue protein was reduced. However, the relative changes in BAT composition during chronic food restriction were similar in normal and dystrophic animals. Thus, reduction in hamster BAT thermogenic capacity during food deprivation may occur by loss of cells and (or)reduction in the tissue protein and thermogenin contents. The extent of protein and (or) DNA loss may be dependent upon the original tissue mass and the severity of food deprivation.  相似文献   

20.
Ca2+-uptake activities of the sarcoplasmic reticulum (SR) were determined with a Ca2+-sensitive electrode in homogenates from fast- and slow-twitch muscles from both normal and dystrophic mice (C57BL/6J strain) of different ages. Immunochemical quantification of tissue Ca2+-ATPase content allowed determination of the specific Ca2+-transport activity of the enzyme. In 3-week-old mice of the dystrophic strain specific Ca2+ transport was already significantly lower than in the normal strain. It progressively decreased with maturation and reached only 40-50% and 30-50% of the normal values in fast- and slow-twitch muscles of adult dystrophic animals, respectively. Tissue contents of calsequestrin were reduced in both types of muscle leading to an increased Ca2+-ATPase to calsequestrin protein ratio. Equal amounts of the Ca2+-ATPase protein (detected by Coomassie blue staining of polyacrylamide gels) were present in SR vesicles isolated by Ca2+-oxalate loading from adult normal and dystrophic fast-twitch muscles. However, the specific ATP-hydrolysing activity of the enzyme was approximately 50% lower in dystrophic than in normal SR. The reduced ATP-hydrolysing activity was correlated with decreased Ca2+-transport activity, phosphoprotein formation and fluorescein isothiocyanate labeling as determined in total microsomal and heavy SR fractions. Although the Ca2+ and ATP affinities of the enzyme were unaltered, its ATPase activity was reduced at all levels of ATP in the dystrophic SR. Taken together, these findings point to a markedly impaired function of the SR and an increase in the population of inactive SR Ca2+-ATPase molecules in murine muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号