首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used translation in vitro of hepatic polyadenylated RNA to characterize the levels of metallothionein mRNA in foetal, neonatal, pregnant and nulliparous rats. The translation products of foetal hepatic metallothionein mRNA increased relative to other mRNA translation products from day 18 of gestation to birth and attained a maximum, maintained throughout suckling, which is tenfold above 17-day foetal hepatic levels and fourfold above adult levels. Maternal liver metallothionein mRNA decreased fivefold between 17 days and 20 days of gestation, rose sharply immediately before birth, and was low throughout lactation.  相似文献   

2.
The concentrations of zinc, copper, metallothionein and metallothionein-Ia mRNA in sheep livers during development was determined. It was found that early sheep foetuses (30-40 days gestation) had very high concentrations of hepatic zinc (2305 +/- 814 micrograms/g dry mass), and that these levels declined steadily to 644 +/- 304 micrograms/g near to term. The copper concentrations in the foetal livers were not higher than those in the adult. The concentrations of metallothionein and metallothionein-Ia mRNA were also very high in the foetal livers and declined steadily during gestation from 261 +/- 94 molecules/pg RNA to 71 +/- 18 molecules/pg near to term. Metallothionein-Ia mRNA concentrations were closely correlated with hepatic zinc concentrations but not with copper. Metallothionein concentrations also decreased during gestation: e.g. 3044 micrograms/g (wet mass) in one foetus on day 34 of gestation to 862 micrograms/g on day 125. After birth, however, the concentrations of metallothionein declined to less than 100 micrograms/g and this decline occurred despite the presence of significant quantities of mRNA. The ratio of metallothionein/metallothionein-Ia mRNA decreased from 1.3 to 3.2 x 10(5) molecules metallothionein/molecule of metallothionein-Ia mRNA during gestation to between 0.28-0.64 x 10(5) molecules/molecule in the postnatal animals. We conclude that the major function of metallothioneins in the foetal liver is protection of the liver against the potentially toxic accumulation of zinc. In the postnatal sheep there appears to be a decreased synthesis or increased degradation of metallothionein.  相似文献   

3.
Using Northern blots the size of antithrombin III (AT III) mRNA in rat liver was found to be 1650 nucleotides. Adult rat kidney also contained a slightly smaller mRNA at about 20% the level in liver. The ontogeny of AT III mRNA in the liver was assessed by dot blot hybridization. The mRNA was detectable at the earliest age examined (14th day of gestation) at about 15% of the adult levels. After the 17th day of gestation the levels of antithrombin III mRNA rise reaching 50% of adult levels at birth. After birth the mRNA levels rise to 75% of adult levels by the 5th day and reach adult levels by 40 days after birth. We suggest that foetal AT III is produced by both the foetal liver and by placental transfer of the maternal inhibitor.  相似文献   

4.
Metallothionein synthesis in foetal, neonatal and maternal rat liver   总被引:2,自引:0,他引:2  
The synthesis of hepatic metallothionein relative to other cytosol proteins was measured by [35S]cysteine incorporation in foetal, neonatal and pregnant rats. The relative rate of hepatic metallothionein synthesis reached a maximum in foetal liver on days 18-21 of gestation. Metallothionein synthesis then declined until weaning, when adult levels were established. The rate of metallothionein synthesis was greater in pregnant rats at term than in nulliparous rats. To determine if circulating inducing agents could play a role in the regulation of metallothionein synthesis in foetal liver we treated pregnant rats with inducers at a time prior to the normal rise in foetal liver metallothionein synthesis. Injections of copper, cadmium or hydrocortisone to 17-day-pregnant dams failed to induce foetal metallothionein synthesis. In contrast, zinc injection to the dam was an effective inducer in the foetuses. Maternal laparotomy (performed to expose the foetus for direct injection of inducers) induced foetal metallothionein synthesis. Metallothionein synthesis in the livers of 17-day-gestation dams was induced by all metal injections and laparotomy but, surprisingly, not by hydrocortisone injection. Maternal adrenalectomy did not influence the subsequent normal elevation in foetal or maternal metallothionein synthesis. These results, in conjunction with previous reports, suggest that mobilization of zinc in serum during late gestation may regulate foetal and maternal changes in metallothionein synthesis.  相似文献   

5.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

6.
The concentrations of copper, zinc and metallothionein-I (MT-I) mRNA were determined in the liver, kidney and brain of the brindled mutant mouse from birth until the time of death. Despite accumulation of copper in the kidney of the mutant, MT-I mRNA concentrations were normal. There was no difference between the MT-I mRNA in the brain of mutant and normal in the first 10 days of life, but after day 10 metallothionein mRNA levels were increased in the mutant. The concentration of copper was very low in the liver of the mutant, and on day 6 after birth the metallothionein mRNA was also reduced by about 50%. This reduction was not seen in copper-deficient 6-day-old pups, despite very low hepatic copper levels. This suggests that the lower hepatic MT-I mRNA in the day 6 brindled mouse was not simply due to the reduction in hepatic copper and also that hepatic copper is not regulating metallothionein gene expression the liver of neonatal mice. After day 12 hepatic MT-I mRNA levels were elevated in mutant and in copper deficient mice, both of which die at 14 to 16 days. These increases and the increase in brain MT-I mRNA in older mutant mice are likely to be caused by stress. Overall the results support the conclusions that the brindled mutation does not cause a constitutive activation of the metallothionein genes, and that the differences in metallothionein mRNA between mutant and normal are most probably secondary consequences of the mutation.  相似文献   

7.
Regulation of the ontogeny of rat liver metallothionein mRNA by zinc   总被引:1,自引:0,他引:1  
To investigate the role of metals in the regulation of the ontogenic expression of rat liver metallothionein (MT) mRNA, the concentrations of zinc, MT and MT mRNA were determined in livers of fetal and newborn rats from dams which were fed with a control or zinc-deficient or copper-deficient or iron-deficient diet from day 12 of gestation. The liver samples were analyzed for MT-mRNA levels using a mouse MT-I cRNA probe. Although the newborn hepatic levels of each metal (zinc or copper or iron) was specifically reduced corresponding to the respective mineral deficiencies, the hepatic concentrations of total MT and MT-I mRNA were significantly decreased only in pups born from zinc-deficient dams. Injection of the zinc-deficient newborn pups with 20 mg Zn as ZnSO4/kg restored with MT-I mRNA levels to slightly above control values within 5 h of injection. The hepatic zinc, MT and MT-I mRNA levels were observed to increase significantly in control fetal rat liver on days 17-21 of gestation but there were little changes in either zinc or MT in fetal livers from zinc-deficient dams during the late gestational period. The MT-I mRNA level also did not show an increase on days 18 and 20 of gestation in zinc-deficient fetal liver as compared to controls. These results demonstrate a direct role of zinc in hepatic MT gene expression in rat liver during late gestation. Immunohistochemical localization of MT using a specific antibody to rat liver MT showed that the staining for MT in zinc-deficient pup liver was mainly in the cytosol in contrast to the significant nuclear MT staining observed in control newborn rat liver. The results suggest that maternal zinc deficiency has a marked effect not only in decreasing the levels of hepatic MT and MT-I mRNA but also in the localization of MT in newborn rat liver.  相似文献   

8.
cDNA probes were employed to measure levels of carbamoyl-phosphate synthetase I (CPS) and ornithine carbamoyltransferase (OCT) mRNAs in fetal and neonatal livers and intestines. In the fetal liver, significant levels of OCT mRNA were present at 15-days gestation while CPS mRNA could not be detected until day 17 of fetal development. Apart from a small decline just after birth, amounts of both mRNAs increased steadily to reach adult levels in postnatal life. In contrast to the situation in liver, CPS and OCT mRNA levels in the fetal intestine rose rapidly to peak at day 21 of gestation and then declined steadily in the first seven days after birth. Using the methyl-sensitive restriction isoschizomeric pair, MspI/HpaII, the 5' ends of both the CPS and OCT genes were shown to undergo demethylation during development. In the case of the OCT gene, however, the hypomethylation characteristic of the adult liver and intestinal mucosa was not observed in the 15-day-old fetal liver, where significant levels of gene expression had already been established. Levels of CPS and OCT mRNA in livers of adults responded to glucagon in normal animals (1.5-fold and 2.2-fold increases, respectively) and to dexamethasone in experimentally induced diabetic animals (3-fold increase in CPS mRNA with no change in OCT mRNA). These treatments were all without effect on the levels of CPS and OCT mRNA in intestinal mucosa.  相似文献   

9.
Kinetic constants for liver glycogen synthase (UDPglucose: glycogen 4-alpha-D-glucosyltransferase, EC 2.4.1.11) with respect to UDPglucose have been measured in foetal liver homogenates from samples taken during late gestation (days 17-22) and the first hours after birth. The V of the inactive form of glycogen synthase increased markedly in this period and there was a significant increase in V of the active enzyme to a maximum at day 20 of gestation. The Km for UDPglucose measured in the presence of glucose-6-P (total activity) did not vary greatly, mean values of 0.51 +/- 0.04 mM. Values derived for the inactive enzyme were almost identical. In contrast, Km values for active glycogen synthase in foetal livers during gestation were significantly higher than those for adult liver. Highest values were seen at day 19 of gestation (1.84 +/- 0.08 mM) followed by a steady fall to 0.55 +/- 0.05 mM in the newborn compared with a mean value of 0.48 +/- 0.04 mM for adult liver. Existence of a reduced affinity of active glycogen synthase for UDPglucose must be recognized when assaying the enzyme in foetal liver, particularly when extrapolating values to rates of glycogen synthesis in vivo. Data were obtained only after removal of an amylase-like contaminant from foetal liver samples which invalidated the radioassay of glycogen synthase. This work illustrates the care needed in the analysis of foetal tissue and the interpretation of resulting data when utilizing methods developed for adult tissue.  相似文献   

10.
In rats amylase activity in the pancreas increased greatly from day 15 of gestation to a maximum on day 21. Then it decreased to less than one-tenth of this maximum value on about day 5 after birth. It increased again about 15 days after birth and reached the adult level about 30 days after birth.No amylase activity was in the parotid gland before birth: it appeared about 12 days after birth and reached the adult level, which was higher than that in the pancreas, about 30 days after birth.The serum corticosterone level was as high as the adult level before birth. Then it decreased to less than one-tenth of the adult level 5 days after birth and increased again from 15 to 25 days after birth to the adult level. The developmental change in the serum corticosterone level seemed to influence amylase activity in the pancreas both before and after birth, and that in the parotid gland only after birth.The serum contained both pancreatic and paratoid type isozymes of amylase until 1 day after birth but only the parotid type from 3 days after birth.  相似文献   

11.
The maturation of the 5'- and 5-monodeiodinase system in liver, kidney and brown adipose tissue of rabbits, during the foetal period (from 21 days of gestation to birth) and the neonatal period (from birth to 3 weeks of life) was studied. A sudden increase of 5'- and 5-monodeiodinase activity in liver and kidney 3 days before birth was observed, falling to a nadir at day 3 after birth. Foetal and neonatal serum T4, T3 and rT3 concentration were very low and rose progressively with age, reaching adult values at about day 21. In the foetal brown adipose tissue high 5'-monodeiodinase and low 5-monodeiodinase activity was found. The 5'-monodeiodinase decreased during the first days of life whereas the 5-monodeiodinase activity remained at a low stable level until day 3 when the activities of both enzymes increased. The increase of conversion rate of T4 to T3 and rT3 in liver and kidney well correlate with the triiodothyronines concentration in serum from day 3 after birth.  相似文献   

12.
Metallothionein (MT) bound to zinc and copper was detected in high concentration in fetal and newborn rat livers by a cadmium saturation method. The levels of both hepatic zinc and MT remained high for the first 14 days after birth and decreased to adult levels by 24 days of age. There was a direct linear relationship between hepatic metallothionein and zinc concentrations during the first 31 days after birth. The ratio of MT to zinc levels also decreased with age suggesting a rapid degradation of MT during postnatal development. Immunohistochemical localization of MT by peroxidase-antiperoxidase technique, using a specific antibody to MT, showed intense intranuclear staining for MT in fetal and newborn rat liver which persisted until Day 9. The nuclear MT staining decreased with age; at 11 days it was equal both in nucleus and cytoplasm and at 14 days, MT was localized mainly in the cytoplasm, similar to adult rat liver pattern. The intranuclear localization of MT in neonates could be considered as a typical fetal-neonatal morphological pattern and its subsequent presence in the cytoplasm, an adult pattern.  相似文献   

13.
By electrophoretic and immunological assay the concentration of hepatic metallothionein in new born chick liver was found to be ontogenically modulated, reaching a peak accumulation per gram liver in fourth day of hatching and declining below the detection limit after second week postnatal. The protein was undetectable upto second week of incubation in egg-embryonic stage. The concentration of metallothionein mRNA shows drastic change during first few days after hatching. The greatest accumulation of metallothionein mRNA was detected in the one day new born chicks, which declined rapidly there after, and reduced to a barely detectable level. Metallothionein was also detected in the in vitro translated product of one day neonatal chick hepatic poly(A+) RNA by S-cysteine labelling and immunoprecipitation. The naturally occurring new-born chick liver metallothionein was found to be a zinc-metallothionein and the concentration of hepatic zinc in new-born chick was found to undergo drastic modulation during development, unlike some other chick tissues. Endogenous zinc ion mobilization can thus play a significant role in the developmental regulation of chick metallothionein expression.  相似文献   

14.
The kinetics of the increase of metallothionein mRNA in rat liver and kidney after CuCl2 injection was determined by cell-free translation and dot-blot hybridization of total RNA isolated at various times after the injection. Both assay procedures gave essentially the same result: a 16-fold increase in hepatic metallothionein mRNA was observed 7h after CuCl2 injection, with a decline to basal values by 15 h. The response in the kidney was less dramatic, with a 6-fold increase in metallothionein mRNA 5 h after injection, and basal values were attained by 12h. The rise in Cu2+ concentration in both organs was closely correlated with the increase in metallothionein mRNA; hepatic Cu2+ was increased 5.9-fold by 5h after injection and renal Cu2+ was increased 4.3-fold 5h after injection. The Zn2+ concentration in the liver had not risen significantly within 5h of Cu2+ injection. Renal Zn2+ concentrations did not alter appreciably in the Cu2+-treated animals. These results support the conclusion that Cu2+ is acting as a primary inducer of metallothionein mRNA in the rat.  相似文献   

15.
1. UDP-glucuronosyltransferase activity towards 12 substrates has been assessed in rat liver during the perinatal period. 2. Between days 16 and 20 of gestation, enzyme activities towards the substrates 2-aminophenol, 2-aminobenzoate, 4-nitrophenol, 1-naphthol, 4-methylumbelliferone and 5-hydroxytryptamine (the 'late foetal' group) surge to reach adult values, while activities towards bilirubin, testosterone, beta-oestradiol, morphine, phenolphthalein, and chloramphenicol (the 'neonatal' group) remain negligible or at less than 10% of adult values. 3. By the second postnatal day, enzyme activities towards the neonatal group have attained, or approached adult values. 4. Dexamethasone precociously stimulates in 17-day foetal liver in utero transferase activities in the late foetal, but not the neonatal group. A similar inductive pattern is found for 15-day foetal liver in organ culture. 5. It is suggested that foetal glucocorticoids, whose synthesis markedly increases between days 16 and 20 of gestation, are responsibile for triggering the simultaneous surge of all the hepatic UDP-glucuronosyltransferase activities in the late foetal group. The neonatal group of activities apparently require a different or additional stimulus for their appearance. 6. The relationship of these two groups of transferase activities to other similar groups observed during induction by xenobiotics and enzyme purification is discussed.  相似文献   

16.
M Sj?blom  L Pilstr?m  J M?rland 《Enzyme》1978,23(2):108-115
The ontogenetic development of the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenases (ALDH I and II) was followed in rats. ADH could be detected just before birth and increased gradually to reach 82% of adult values at 47 days. ALDH I and II were present from day 15 of gestation, increased rapidly at birth, and reached 80-90% adult values at 47 days. The ratio between ALDH and ADH activities decreased gradually during ontogenesis. The relative subcellular distribution of all enzymes was identical before birth, 7 days after birth and in adults. The placental activities of ADH and ALDH I and II were studied at 15 and 20 days of pregnancy. ADH could not be detected in placentas. Low activities of ALDH I and II were present in placentas studied at 15 days of gestation, and still lower activities were found in placenta at 20 days.  相似文献   

17.
Changes in hepatic lipogenesis during development of the rat   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Changes in the activities of ATP citrate lyase, ;malic' enzyme, glucose 6-phosphate dehydrogenase, pyruvate kinase and fructose 1,6-diphosphatase, and in the ability to incorporate [1-(14)C]acetate into lipid have been measured in the livers of developing rats between late foetal life and maturity. 2. In male rats the activities of those systems directly or indirectly concerned in lipogenesis (acetate incorporation into lipid, ATP citrate lyase and glucose 6-phosphate dehydrogenase) fall after birth and are maintained at a low value until weaning. After weaning these activities rise to a maximum between 30 and 40 days and then decline, reaching adult values at about 60 days. ;Malic' enzyme activity follows a similar course, except that none could be detected in the foetal liver. Pyruvate kinase activity is lower in foetal than in adult livers and rises to slightly higher than the adult value in the post-weaning period. Fructose 1,6-diphosphatase activity rises from a very low foetal value to reach a maximum at about 10 days but falls rapidly after weaning to reach adult values at about 30 days. 3. Weaning rats on to a high-fat diet caused the low activities of acetate incorporation, ATP citrate lyase, glucose 6-phosphate dehydrogenase and pyruvate kinase, characteristic of the suckling period, to persist. ;Malic' enzyme and fructose 1,6-diphosphatase activities were not altered appreciably. 4. No differences could be detected in hepatic enzyme activities between males and females up to 35 days, but after this time female rats gave higher values for acetate incorporation, glucose 6-phosphate dehydrogenase activity and ;malic' enzyme activity. 5. The results are discussed in relation to changes in alimentation and hormonal influences.  相似文献   

18.
The cDNA-deduced primary structure of rabbit corticosteroid-binding globulin (CBG) contains 383 amino acids (mol wt, 42,326), including three cysteine residues and four sites for N-glycosylation. It is primarily the product of a 1.68-kilobase hepatic mRNA, but small amounts of CBG mRNA were also found in maternal lung, spleen, and ovary and fetal kidney. In the fetus, hepatic CBG mRNA concentrations increase markedly after day 11 and were 2- to 5-fold higher than those in maternal liver during days 17-23. They then declined to very low levels at term (31 days). By contrast, maternal hepatic CBG mRNA levels did not increase until day 23; reached a peak at about day 27, and then declined to prepregnancy values by 3 days after delivery. In general, fetal and maternal hepatic CBG mRNA concentrations reflect the corresponding serum CBG levels. Our data, therefore, indicate that the marked changes in fetal and maternal plasma CBG levels during pregnancy reflect changes in the biosynthesis of the protein rather than alterations in compartmentalization or clearance.  相似文献   

19.
Riis B  Risom L  Loft S  Poulsen HE 《DNA Repair》2002,1(9):709-717
This study was set up to investigate the relationships between the formation and removal of DNA damage in form of 8-oxodeoxyguanosine (8-oxodG) in neonatal (day 16 of gestation) as compared to adult rats. The hypothesis addressed was whether the rapidly dividing foetal tissue has an enhanced requirement of DNA repair providing protection against potentially mutagenic DNA damages such as 8-oxodG. The activity of the primary 8-oxodG-repair protein OGG1 was measured by a DNA incision assay and the expression of OGG1 mRNA was measured by Real-Time PCR normalised to 18S rRNA. The tissue level of 8-oxodG was measured by HPLC-ECD. We found a 2-3-fold increased incision activity in the foetal control tissue, together with a 3-15-fold increase in mRNA of OGG1 as compared to liver tissue from adult rats. The levels of 8-oxodG in the foetal tissue were unaltered as compared to the adult groups. To increase the levels of 8-oxodG, the rats received an injection (i.p.) of the hepatotoxin 2-nitropropane. The compound induced significant levels of 8-oxodG in male rat livers 5h after the injection and in the foetuses 24h after the injection, while the female rats showed no increase in 8-oxodG. The incision activity was slightly depressed in both male and female liver tissue and in the foetal tissue 5h after the injection, but significantly increased from 5 to 24h after the injection. However, it did not reach levels significantly above the control levels.In conclusion, this study confirms that foetal tissue has increased levels of OGG1 mRNA and correspondingly an enhanced incision activity on an 8-oxodG substrate in a crude tissue extract.  相似文献   

20.
Erythropoietin (EPO) mRNA expression in kidneys, liver and testes of foetal and neonatal pigs was analysed using a competitive RT-PCR assay. The results indicate that in the foetal pig, erythropoietin expression is greatest in the liver, at birth; hepatic and renal expression are nearly identical, and by 5 weeks of age there is mainly renal expression. The dynamics of the renal expression of EPO mRNA in the perinatal period provide a correlate for observations made earlier of plasma EPO concentrations. Early in foetal life (30 days after artificial insemination), the mesonephroi contained large amounts of EPO mRNA. As in the rat, the testes produced EPO mRNA in amounts comparable to the liver on a per gram tissue basis, though much less on a per organ basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号