首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vijaya   《Palaeoworld》2011,20(1):61-74
In borehole RRK-1, Rakshitpur, Raniganj Coalfield in Damodar Basin, the lithounits identified in the interval of 115.00–610.00 m are in unconformable contact with each other. Tertiary sediments (115.00–179.70 m) that contain Callialasporites, Araucariacites, and Podocarpidites show continuity with the underlying supra-trappean strata (179.70–185.70 m). The two palynozones identified within the Rajmahal Formation (Foraminisporis asymmetricus 179.70–185.70 m and Foraminisporis wonthaggiensis 198.92–216.63 m) suggest Valanginian to Barremian age. The chocolate facies of the Panchet Formation (253.70–471.70 m) is devoid of palyniferous matter except at 260.55 m depth where the Foraminisporis wonthaggiensis assemblage of the younger horizon (inter-trappean) continues to occur. Downwards, at 261.20–262.40 m depth, Permian taxa Striatopodocarpites, Faunipollenites, and Densipollenites are abundant, but Arcuatipollenites pellucidus, Playfordiaspora cancellosa, and Goubinispora indica are rare. Besides, Callialasporites turbatus/C. microvelatus, first occurred at 262.40 m depth, are still present in the Panchet Formation. This kind of mixed population of palynomorphs is suggestive of disturbed zone in the deposite, and had happened at the on-set of volcanic activity in the study area, and re-defines the status of this part (253.70–262.40 m) to be infra-trappean. Occurrence of pebble bed at 262.40–262.80 m further supplements this hiatus. In the coal horizon (471.70–610.00 m), two identified palynoassemblages, Densipollenites magnicorpus and Gondisporites raniganjensis, indicate Late Permian age for this part of the Raniganj Formation. Abundant wood shreads, plant tissues in the chocolate facies of the Panchet Formation and at intervals in the Coal horizon suggest high-energy flow during sedimentation in the study area.  相似文献   

2.
Macrozoobenthos of the ultraoligotrophic Lake 95 (61°N, 46°W, 8 ha, zmax=18 m, ) is composed of about 14 taxa dominated by 12 Chironomidae species. Abundance, life cycle, biomass and production were estimated for the six dominant taxa. Abundance declined fromca. 4150 at 2.5 m depth toca. 1400 ind m–2 at 16 m depth and averagedca. 3200 ind m–2 on a lakewide basis. By numbers,Heterotrissocladius changi andH. oliveri dominated the average fauna.H. changi was common at the 2.5 m and 5 m depth stations, whereasH. oliveri dominated from 5 m depth downwards. Chironomids showed mainly a 1-yr life cycle, but apparently bothHeterotrissocladius species had two contemporary cohorts with emergence in midsummer and late autumn/early spring, respectively. Average annual ratio was 4.2 and 4.6 forH. oliveri andH. changi, respectively. Annual production varied from 0.3 g ash-free dry weight (AFDW) m–2 y–1 at 16 m depth to 1.6 g AFDW m–2 y–1 at 2.5 m depthH. changi contributed 45%, fiveMicropsectra spp. 17% andH. oliveri 15% to total average production, which on a lakewide basis wasca. 1.1 g AFDW or 25 kJ m–2 y–1. Lake 95 thus belongs at the very low end of measured lake zoobenthic productions, which range from 10 kJ m–2 y–1 in Arctic lakes toca. 1600 kJ m–2 y–1 in highly eutrophic shallow lakes.  相似文献   

3.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   

4.
The depth distribution of photosynthetic pigments and benthic marine diatoms was investigated in late spring at three different sites on the Swedish west coast. At each site, sediment cores were taken at six depths (7–35 m) by scuba divers. It was hypothesized that (1) living benthic diatoms constitute a substantial part of the benthic microflora even at depths where the light levels are <1% of the surface irradiance, and (2) the changing light environment along the depth gradient will be reflected in (a) the composition of diatom assemblages, and (b) different pigment ratios. Sediment microalgal communities were analysed using epifluorescence microscopy (to study live cells), light microscopy and scanning electron microscopy (diatom preparations), and HPLC (photosynthetic pigments). Pigments were calculated as concentrations (mg m–2) and as ratios relative to chlorophyll a. Hypothesis (1) was accepted. At 20 m, the irradiance was 0.2% of surface irradiance and at 7 m, 1%. Living (epifluorescent) benthic diatoms were found down to 20 m at all sites. The cell counts corroborated the diatom pigment concentrations, decreasing with depth from 7 to 25 m, levelling out between 25 and 35 m. There were significant positive correlations between chlorophyll a and living (epifluorescent) benthic diatoms and between the diatom pigment fucoxanthin and chlorophyll a. Hypothesis (2) was only partly accepted because it could not be shown that light was the main environmental factor. A principal component analysis on diatom species showed that pelagic forms characterized the deeper locations (25–35 m), and epipelic–epipsammic taxa the shallower sites (7–20 m). Redundancy analyses showed a significant relationship between diatom taxa and environmental factors – temperature, salinity, and light intensities explained 57% of diatom taxa variations.  相似文献   

5.
Unionid clams were collected at 1–2 m, 3–4 m and 6–7 m depth in lake Mattsee, a moderately mesotrophic lake, to investigate the effect of depth on clam growth and age structure. No significant differences in age structure of Anodonta cygnea were found (p=0.65). Three and ten years old clams were present at all depths, but in different percentages. Whereas at 1–2 m 13.3% of the collected clams were <4 years old, this percentage was 4.4% at 6–7 m and 7.1% at 3–4 m. A greater percentage (6.7%) of older mussels (9, 10 years) were collected at 6–7 m than at 1–2 m (2.2%). Growth declined with depth. Total length at a given age of clams at 1–2 m and 3–4 m did not differ (p=0.54), whereas differences were significant between clams at 1–2 m and 6–7 m (p<0.05) as well as between 3–4 m and 6–7 m (p<0.05). The Growth constant k was highest at 1–2 m depth.  相似文献   

6.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

7.
Svalbard bryozoan communities were investigated along a depth range from the surface to 296 m between the inner glacial fronts and fjord mouths during 2001 and 2002. The main study area was Kongsfjorden (79°N, 12°E). A total of 137 taxa of bryozoans were identified: 108 to species, 24 to genus, 3 to family, 1 to order and 1 to phylum level. Cluster and multidimensional scaling analyses revealed four distinct assemblages of bryozoans: shallow (0–40 m; 68 taxa), deep (40–296 m; 80 taxa), inner fjordic (three taxa) and an assemblage found on small stones in shallow waters (nine taxa). The inner fjordic assemblage was recorded from the front of tidal glaciers extending about 10 km out into the fjord. In terms of abundance, Celleporella hyalina Linnaeus dominated in shallow areas (18%), Hippothoa arctica Kluge (55%) in deep water, Alcyonidium disciforme Smitt (86%) proximate to glaciers fronts and Electra arctica Borg on small stones (98%). The species were classified according to their depth range as a stenobathic-shallow (46 taxa), stenobathic-deep (57 taxa) and eurybathic-generalist (21 taxa). Mean diversity measures did not show any significant differences between the shallow and deep communities. The bryozoan assemblages seem to be structured primarily by processes related to depth and sediment characteristics.  相似文献   

8.
Zooplankton abundance and biomass were determined during January 1990 at two stations to the north-west of South Georgia using a Longhurst Hardy Plankton Recorder (LHPR). At both shelf and oceanic station sites, zooplankton biomass, (excluding Euphausia superba), was found to be ca. 13 g dry mass m–2. Copepods and small euphausiids dominated the catches. These estimates are over 4 times higher than values generally reported for the Southern Ocean and may reflect firstly, the high productivity of the study area, secondly, the time of year, summer, when biomass for many species is maximal, and thirdly, the high sampling efficiency of the LHPR. Principal components analysis disclosed similarities and differences between adjacent depth strata in terms of abundance, biomass and species composition. At both stations most variability occurred in the mixed layer (0–60 m) and thermocline (60–120 m) with depth horizons below this being more homogeneous. Diel migrations were observed for most taxa with abundance increasing in the mixed layer at night. At the oceanic station, species and higher taxa belonging to the mesopelagic community were generally well spread throughout this domain and, with the exception of Pleuromamma robusta and Metridia curticauda, showed little evidence of migration. The grazing impact of the epipelagic community (copepods and small euphausiids) was estimated to remove 3–4% of the microbial standing stock day–1 and a conservative 25% and 56% of daily primary production at the oceanic and shelf stations respectively.  相似文献   

9.
An investigation was carried out on the macrobenthos of Montedoglio Reservoir, an artificial lake in central Italy. Seven qualitative and quantitative samplings, performed by drag netting and airlifting at 5 stations, revealed a total of 48 taxa during 1992–94. The highest density and most frequent terms were Tubificidae, Chironomidae of the genera Procladius, Tanypus, Chironomus and Polypedilium and Chaoboridae. Tubificidae were found mainly at a depth of 7–9 m, Chironomidae at 1–3 m. The modest density and low biological diversity values are probably attributable to the substrate characteristics and a drop in hypolymnic oxygen during thermic stratification. The oxygen stress at the lake bed, which was unexpected given the scarce planktonic productivity, may have been caused by recent impoundment.  相似文献   

10.
The relationship between invertebrate densities, current velocity and water depth was studied in the Dan River, northern Israel. Maximum current preferences ranged from 5–120 cm sec–1, and depth preferences ranged from 5–60 cm. Thirty-five taxa of invertebrates were collected by means of colonization cages. Larval and adult stages of 3 Elmidae (Coleoptera) species were treated separately: Limnius letourneuxi, Grouvellinus caucasicus and Elmis rioloides. Differences in current preference were observed between larval and adult stages of the same species of Elmidae. Taxa were also grouped according to preference for turbulence. Wide ranges of depth and current velocity preferences were observed. Most of the taxa were found at between 80–100 cm sec–1 and at depths of less than 30 cm. A correlation between species diversity and current velocity was established. Velocities of 60–80 cm sec–1 contained the greatest overlap of faunal preference. The sensitivity of selected species to stream flow reduction is discussed.IES Laboratory, Department of Zoology, Hebrew University; and the Nature Reserves Authority  相似文献   

11.
Structures of mitochondrial bc 1 complex have been reported based on four different crystalforms by three different groups. In these structures, the extrinsic domain of the Rieske [2Fe–2S]protein, surprisingly, appeared at three different positions: the c 1 position, where the [2Fe–2S]cluster exists in close proximity to the heme c 1; the b position, where the [2Fe–2S] clusterexist in close proximity to the cytochrome b; and the intermediate position where the[2Fe–2S] cluster exists in between c 1 and b positions. The conformational changes betweenthese three positions can be explained by a combination of two rotations; (1) a rotation of theentire extrinsic domain and (2) a relative rotation between the cluster-binding fold and thebase fold within the extrinsic domain. The hydroquinone oxidation and the electron bifurcationmechanism at the QP binding pocket of the bc 1 complex is well explained using theseconformational changes of the Rieske [2Fe–2S] protein.  相似文献   

12.
A study was conducted on the interaction effect of Fe–Mg on growth, metabolism and nutrient uptake in radish (Raphanus sativus L. cv. All Season) plants grown in sand culture. Dry matter yields were maximum at normal Fe-normal Mg and excess Fe-excess Mg treatments where the Fe/Mg ratio in the rooting medium was 0.12; below or above this ratio the yields were continuously lowered. On the basis of the effects of various Fe–Mg combinations on growth, visible effects, concentration of chlorophyll, the activities of catalase, peroxidase and ribonuclease and the tissue concentration of Fe, Mg and Mn, it is inferred here in this study that Fe and Mg are mutually antagonistic in the growth and metabolism of radish.  相似文献   

13.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

14.
Synopsis Young-of-the-year fish communities in naturally vegetated sites were compared with those inhabiting nearby sites where lakeshore development (i.e., construction of homes, boat docks, and beaches) reduced nearshore macrophyte species richness and abundance. The study was conducted in a 2266 hectare, glacially formed, eutrophic lake in northwestern Iowa during the summers of 1987 and 1988. Study sites were divided into 3 depth zones, and fishes were collected by seining (0–1 m), plexiglass traps (1–2 m), and a nonclosing Tucker trawl (2–3 m). Species richness and total fish abundance were consistently greater in natural than in developed sites in both nearshore (0–1 m) and intermediate (1–2 m) depth zones, but differed little between natural and developed sites in the offshore (2–3 m) depth zone. Nearly 50% of the species sampled, including yellow perch Perca flavescens and bluegill Lepomis macrochirus, inhabited limnetic areas as larvae before migrating inshore as juveniles. Eighteen of the 20 fish species collected as juveniles were in greater abundance in natural than in developed sites. Smallmouth bass Micropterus dolomieui was the only game species consistently found in equal or greater abundance in developed sites. Within all sites, juvenile fishes were generally most abundant where macrophyte abundance and species richness were greatest. Findings from this study demonstrate the importance of nearshore aquatic vegetation to fishes during their first summer of life. If nearshore vegetation beds of lakes continue to be regarded as a nuisance and indiscriminately removed, important fish nursery habitat will be lost. The short-term result will likely be reduced year-class strength of vegetation-dependent species. More importantly, the long-term effects will be changes in fish community richness and composition which will, in turn, alter the lake's fishery.  相似文献   

15.
The meiobenthos of five mangrove vegetation types in Gazi Bay,Kenya   总被引:1,自引:0,他引:1  
The vertical distribution of meiofauna in the sediments ofAvicennia marina,Bruguiera gymnorrhiza,Ceriops tagal,Rhizophora mucronata andSonneratia alba at Gazi Bay (Kenya), is described. Seventeen taxa were observed, with highest densities in the sediments ofBruguiera (6707 ind. 10 cm–2), followed byRhizophora (3998 ind. 10 cm–2),Avicennia (3442 ind. 10 cm–2),Sonneratia (2889 ind. 10 cm–2) andCeriops (1976 ind. 10 cm–2). Nematodes accounted for up to 95% of total densities; other common taxa were copepods, turbellarians, oligochaetes, polychaetes, ostracods and rotifers. High densities occurred to about 20 cm depth in the sediment. EspeciallyCeriops sediments show still high densities of nematodes (342 ind. 10 cm–2) and copepods (11 ind. 10 cm–2) in the deepest layer (15–22 cm). Particle size and oxygen conditions were major factors influencing meiobenthic distribution;Uca burrows had a major impact on distribution and abundance of meiofauna.  相似文献   

16.
Seasonal distribution and community succession of macrofoulants were studied using concrete panels in the coastal waters of Kalpakkam, east coast of India, for a period of two years. The panels were suspended at 1 m, 4 m and 7 m depths and categorised into short-term and long-term exposures. A high total of 105 fouling taxa were recorded. The major fouling organisms observed were hydroids, barnacles, mussels, anthozoans and ascidians. Considerable faunistic and biomass variations were noticed both with respect to season and depth. The month of panel exposure had a significant influence on the succession of fouling communities. On the short-term panels, the maximum fouling biomass was 64 kg m–2 in 30 days at 4 m depth, whereas on the long-term panels, it was 250 kg m–2 after 216 days at 4 m depth. A comparison with the biomass values reported from elsewhere shows that biomass build-up in Kalpakkam coastal waters is one of the highest ever reported. Such a very high biomass accumulation is due to the extremely dense settlement of mussels, especially the green mussel,Perna viridis (L).  相似文献   

17.
Summary Distributional relationships are described for post-larval and larval Euphausia superba and Thysanoessa sp. (probably macrura) and post-larval Euphausia frigida collected in 0–70/80 m and 0–175/200 m depth ranges with a MOCNESS sampler north of Elephant Island (61°S, 55°W) during 17–23 March 1984. Larval E. superba (predominantly calyptopes stage 2 and 3) were rare shallower than 80 m at night. Day catches of post-larval E. suberba were small and night catches were primarily near the top of the thermocline above 50 m depth. Thysanoessa sp. occurred throughout the 0–200 m depth range and was abundant in the upper 80 m both night and day. E. frigida migrated to the upper 80 m at night from deeper day depths. Larval stages of E. superba and bost-larval stages of all three species demonstrated independent and variable vertical distribution patterns both night and day. Changes in E. superba abundance and distributional patterns could to a certain extent be associated with observed environmental changes. An increase in larval and decrease in post-larval E. superba abundances between 0–80 m was associated with an intrusion of cold water at depth. At night, vertically restricted concentrations of post-larval E. superba were associated with shallow mixed layer depths, and a significant vertical separation of developmental stages and size categories was observed only during periods of stratification in the upper 80 m. Fluctuations in the distribution and abundance of Thysanoessa sp. and distribution of E. frigida did not appear to be influenced by physical parameters within the upper 80 m. Within the 0–80 m depth range, the distributions of these two species differed from each other and from E. superba and showed large tow to tow variability that could not be related to physical parameters in the upper water column.  相似文献   

18.
Macrozoobenthos in Thingvallavatn is dominated by 42 taxa. The vertical distribution delimits 5 communities: (1) the surf zone community from 0–2 m, (2) the upper stony littoral community from 2–6 m, (3) the lower stony littoral community from 6–10 m, (4) the Nitella zone community from 10–20 m, and (5) the profundal zone community from 20–114 m. Total mean lakewide production was 78 kJ m–2 yr–1. Herbivores, detritivores, and carnivores contributed 59%, 38% and 3%, respectively. Respiration and ingestion were estimated according to the literature. Net production efficiency averaged 0.50. Ingestion was dominated by herbivores in the littoral zones (46–81%), while detritivores made up 93% in the profundal zone. Total zoobenthic production averaged 6% of estimated available food with a range from 10–11% in the three upper littoral zones to only 2% in the Nitella zone. The profundal fauna converted 6% of the estimated sedimentation of organic matter to secondary production. On a lakewide basis the zoobenthis utilized one third of the estimated potential food resources. Zoobenthic production made up 32% of total secondary production.  相似文献   

19.
Summary Meiofauna communities from 10 stations along a depth transect from approximately 500 to 2,000 m off the Halley Bay Station (Weddell Sea) are investigated. Representatives of about 30 smallsized taxa of higher category are found, most of them belonging to the meiofauna. Loricifera are recorded for the first time for the Southern Ocean. At one of the stations a maximum of 22 taxa occur, the mean number of taxa ranges from 7 to 16. Nematoda, Harpacticoida, Ostracoda, Polychaeta and Bivalvia are present at all sampling sites. Nematodes are always dominant representing more than 90% of the individuals per sample, followed by harpacticoids (3%) and kinorhynchs (1.2%). Important fractions of the meiofauna (an average of more than 50%) occur in strata below the top 0–1 cm layer. Maximal density is 3,800 individuals (10 cm–2), the mean abundance per station ranges from 790 to 3,720 individuals (10 cm–2) and the overall mean is 1,700 individuals (10 cm–2). Multivariate analysis (TWINSPAN, Cluster analysis, DCA) discriminates between three communities which are correlated with depth and sediment characteristics: the near shelf-ice, the slope and the deep-sea communities.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

20.
Iris Werner 《Polar Biology》2005,28(4):311-318
The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7–10/10) prevailed and ice thickness ranged over <0.1–1.6 m covered by <0.1–0.6 m of snow. Air temperatures ranged between –1.8 and –27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0–5 m depth) were not stratified (T=–1.9 to –2.0°C and S=34.2–34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 g chlorophyll a l–1), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2–241.3 and 5.3–16.4 g l–1, respectively, the C/N ratio over 11.2–15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0–1.8 ind. m–2 for Apherusa glacialis, 0–0.7 ind. m–2 for Onisimus spp., and 0–0.8 ind. m–2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181–2,487 ind. m–3 (biomass: 70–2,439 g C m–3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34–1,485 ind. m–3), contributing 19–65% to total abundances, followed by copepod nauplii (85–548 ind. m–3) and the cyclopoid copepod Oithona similis (44–262 ind. m–3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号