首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Putative sites for nutrient uptake in arbuscular mycorrhizal fungi   总被引:2,自引:0,他引:2  
Berta Bago 《Plant and Soil》2000,226(2):263-274
Nutrition of the arbuscular mycorrhiza (AM) is addressed from a fungal point of view. Intraradical and extraradical structures proposed as preferential sites for nutrient acquisition in arbuscular mycorrhizal (AM) fungi are considered, and their main features compared. This comparison includes the formation and function of branched structures (either intra- or extraradical) as putative nutrient uptake sites with unique morphological and physiological features in the AM fungal colony. The morphology and functioning of these structures are further affected by intra- or extraradical environmental factors. A model is presented which portrays the intrinsic developmental and physiological duality of the AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
3.
4.
5.
Nitrogen (N) is known to be transferred from fungus to plant in the arbuscular mycorrhizal (AM) symbiosis, yet its metabolism, storage and transport are poorly understood. In vitro mycorrhizas of Glomus intra-radices and Ri T-DNA-transformed carrot roots were grown in two-compartment Petri dishes. (15)N- and/or (13)C-labeled substrates were supplied to either the fungal compartment or to separate dishes containing uncolonized roots. The levels and labeling of free amino acids (AAs) in the extra-radical mycelium (ERM) in mycorrhizal roots and in uncolonized roots were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Arginine (Arg) was the predominant free AA in the ERM, and almost all Arg molecules became labeled within 3 wk of supplying (15)NH(4) (+) to the fungal compartment. Labeling in Arg represented > 90% of the total (15)N in the free AAs of the ERM. [Guanido-2-(15)N]Arg taken up by the ERM and transported to the intra-radical mycelium (IRM) gave rise to (15)N-labeled AAs. [U-(13)C]Arg added to the fungal compartment did not produce any (13)C labeling of other AAs in the mycorrhizal root. Arg is the major form of N synthesized and stored in the ERM and transported to the IRM. However, NH(4) (+) is the most likely form of N transferred to host cells following its generation from Arg breakdown.  相似文献   

6.
This study characterizes the molecular and phylogenetic identity of fungi involved in arbuscular mycorrhizal (AM) associations in extant Huperzia and Lycopodium (Lycopodiaceae). Huperzia and Lycopodium are characterized by a life cycle with long-lived autotrophic sporophytes and long-lived mycoheterotrophic (obtain all organic carbon from fungal symbionts) gametophytes. 18S ribosomal DNA was isolated and sequenced from Glomus symbionts in autotrophic sporophytes of seven species of Huperzia and Lycopodium and mycoheterotrophic Huperzia gametophytes collected from the Páramos of Ecuador. Phylogenetic analyses recovered four Glomus A phylotypes in a single clade (MH3) that form AM associations with Huperzia and Lycopodium. In addition, phylogenetic analyses of Glomus symbionts from other nonphotosynthetic plants demonstrate that most AM fungi that form mycoheterotrophic associations belong to at least four specific clades of Glomus A. These results suggest that most mycoheterotrophic plants that form AM associations do so with restricted clades of Glomus A. Moreover, the correspondence of identity of AM symbionts in Huperzia sporophytes and gametophytes raises the possibility that photosynthetic sporophytes are a source of carbon to conspecific mycoheterotrophic gametophytes via shared fungal networks.  相似文献   

7.
8.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

9.
10.
11.
12.
13.
14.
AM真菌在有机农业发展中的机遇   总被引:3,自引:0,他引:3  
在农田生态系统中,许多农作物均为丛枝菌根(AM)真菌的优良宿主植物,当AM真菌与这些宿主植物建立共生关系之后,AM真菌的存在有益于宿主植物的生长。然而,传统农业耕作模式中化学肥料和农药的施用、耕作制度的不断调整和非宿主植物的种植等都不利于AM真菌的建植。有机农业生态系统排除了化学肥料和农药的施用,减少了对AM真菌生长不利的因素,促进了土壤中AM真菌数量的增加和群落多样性的提高。同时,AM真菌可以通过多种方式改善土壤物理结构、提高农作物对干旱胁迫的耐受能力以及宿主植物对病虫害的抗性/耐性、抑制杂草生长、促进营养物质的吸收,进而提高植物的生长和改善产品的品质。基于此,围绕AM真菌在有机农业发展中的生态学功能展开论述,分析当前有机农业生态系统存在的问题,探讨利用AM真菌发展有机农业的可行性及其发展的机遇,以期促进AM真菌在有机农业发展中的应用。  相似文献   

15.
16.
The aim of this study is to investigate the effects of arbuscular mycorrhizal fungi (AMF) on garlic plants growth and the uptake of selenium (Se). Garlic plants were grown in the pots inoculated with Glomus fasciculatum and G. mosseae and maintained in a greenhouse. Three weeks after planting, the pots had received different concentrations of Se (5, 10, 15, 20, 25 mg kg?1 of soil) in the form of selenium dioxide (SeO2) at 3 weeks intervals up to 12 weeks. For physiological and biochemical analysis, the samples were randomly collected from five plants of each experiment. Maximum AM infection, spore population and plant biomass were observed in the roots of mycorrhizal-mediated plants without Se, and they were gradually declined in both mycorrhizal and non-mycorrhizal (NM) plants with increasing concentrations of Se. Among the two Glomus species tested, G. fasciculatum-mediated plants showed higher AM infection, spore population and plant biomass than G. mosseae. No differences were observed for the uptake of Se in mycorrhizal plants and NM plants. However, NM plants uptake more Se than mycorrhizal plants. Higher contents of total chlorophyll and sugars were observed in plants inoculated with G. fasciculatum without Se and they were decreased in the presence of Se. In contrast, increased amount of glutathione peroxidase was observed at increasing concentrations of Se up to 20 mg kg?1. High-performance liquid chromatography data revealed that SeO2 converted to organic form of Se as γ-glutamyl-Se-methylselenocysteine. These results are basis for further investigations on the role of AMF on plant growth and uptake of Se in crop plants.  相似文献   

17.
Microscopic evidence suggests that fungi forming endosymbioses with liverworts in the Marchantiales are arbuscular mycorrhizal (AM) fungi from the Glomeromycota. Polymerase chain reaction amplification of ribosomal sequences confirmed that endophytes of the New Zealand liverwort, Marchantia foliacea, were members of the genus Glomus. Endophytes from two Glomus rDNA phylotypes were repeatedly isolated from geographically separated liverwort samples. Multiple phylotypes were present in the same liverwort patch. The colonizing Glomus species exhibited substantial internal transcribed spacer sequence variation within phylotypes. This work suggests that certain liverwort species may serve as a model for studying DNA sequence variation in colonizing AM phylotypes and specificity in AM-host relationships.  相似文献   

18.
19.
Sequencing of the 5' end of the large ribosomal subunit (LSU rDNA) and quantitative polymerase chain reaction (qPCR) were combined to assess the impact of four annual Medicago species (Medicago laciniata, Medicago murex, Medicago polymorpha and Medicago truncatula) on the genetic diversity of arbuscular mycorrhizal (AM) fungi, and on the relative abundance of representative AM fungal genotypes, in a silty-thin clay soil (Mas d'Imbert, France). Two hundred and forty-six Glomeromycete LSU rDNA sequences from the four plant species and the bulk soil were analysed. The high bootstrap values of the phylogenetic tree obtained allowed the delineation of 12 operational taxonomic units (OTUs), all belonging to Glomus. Specific primers targeting Glomeromycetes and major OTUs were applied to quantify their abundance by qPCR. Glomeromycetes and targeted OTUs were significantly more abundant in the root tissues than in the bulk soil, and the frequencies of three of them differed significantly in the root tissues of the different plant species. These differences indicate that, despite the absence of strict host specificity in mycorrhizal symbiosis, there was a preferential association between some AM fungal and plant genotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号