首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

2.
Bustos SP  Reithmeier RA 《Biochemistry》2006,45(3):1026-1034
Anion exchanger 1 (AE1, Band 3) is the predominant membrane protein of erythrocytes. Its 52 kDa C-terminal domain functions as a chloride-bicarbonate exchanger, while its 43 kDa N-terminal cytosolic domain (cdb3) anchors the cytoskeleton to the membrane. Several proteins bind to cdb3, including protein 4.2, a cytoskeletal protein. Three mutations in cdb3 are associated with hereditary spherocytosis (HS) and decreased levels of protein 4.2 in erythrocytes. In this study, these cdb3 mutants (E40K, G130R, and P327R) were expressed in and purified from Escherichia coli. Sedimentation experiments showed that the wild-type and mutant proteins are dimers. No difference in secondary structure between mutant and wild-type proteins was detected using circular dichroism (CD) analysis. The wild-type and mutant proteins underwent similar pH-dependent conformational changes when monitored by intrinsic tryptophan fluorescence. Urea denaturation of proteins monitored by intrinsic fluorescence showed no significant differences in the sensitivity of the proteins to this chemical denaturant. Thermal denaturation monitored by CD and by calorimetry revealed that only the P327R mutant had a significantly lower midpoint of transition (approximately 5 degrees C) than the wild-type protein, suggesting a modest decrease in stability. The results show that the HS mutant cdb3 proteins do not differ to any great extent in structure from the wild-type protein, suggesting that the HS mutations may directly affect protein 4.2 binding.  相似文献   

3.
The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase.  相似文献   

4.
A strategy for simultaneous purification and refolding of proteins overexpressed with an intein tag is described. A recombinant lipase overexpressed in Escherichia coli ER2566 with the intein tag and obtained as inclusion bodies was solubilized in buffer containing 8 M urea or cetyltrimethylammonium bromide. The solubilized lipase was precipitated with chitosan and the affinity complex of the polymer with the fusion protein was obtained. The intein tag was cleaved with dithiothreitol and the refolded lipase was obtained in active form. Activity recovery of 80% was observed and the enzyme had a specific activity of 2965 units/mg. The purified lipase showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purity and activity recovery were comparable with that of the preparation obtained by using the commercial kit which utilizes chromatography on chitin beads. The purified and refolded lipase was characterized by fluorescence and CD spectroscopy.  相似文献   

5.
The blood group Duffy antigen of human erythrocytes, which exists in two allelic forms, Fy(a) and Fy(b), is a promiscuous chemokine receptor. In this report we describe the expression and purification of a chimeric protein composed of the amino-terminal extracellular domain of the Duffy antigen (aa 3-60), C-terminal intracellular fragment of glycophorin A (GPA, aa 104-131), and the hexahistydyl tag. We obtained two forms of the recombinant protein containing the Fy(a) or Fy(b) epitope, denoted Fy(a)/GPA and Fy(b)/GPA, respectively. These constructs were expressed in Escherichia coli as periplasmic proteins and were purified by affinity chromatography on the Ni-NTA-agarose. Both proteins bound the monoclonal antibodies recognizing the common Fy6 epitope of the Duffy antigen and an epitope of the C-terminal fragment of GPA, and only the Fy(a)/GPA bound anti-Fy(a) antibody. However, binding of IL-8 to the recombinant proteins was not detected, which indicated that an N-terminal domain of the Duffy antigen is not sufficient for an effective chemokine binding. The lack of the chemokine binding was not likely to be due to the lack of glycosylation of the Fy/GPA, since IL-8 was effectively bound to de-N-glycosylated erythrocytes.  相似文献   

6.
Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins.  相似文献   

7.
The class 1 protein (PorA) is a major component of the outer membrane of Neisseria meningitidis and functions as a cationic porin. The protein is particularly effective in generating a bactericidal immune response following infection and is therefore under investigation as a potential antigen for inclusion in new meningococcal vaccines. Studies on the vaccine potential of PorA would be facilitated by the production of pure protein, free from other components of the meningococcal outer membrane. In the current study, PorA was expressed from the heterologous host Escherichia coli as a C-terminal fusion to an inducible protein-splicing element (intein) with an N-terminal chitin-binding domain (CBD) (IMPACT-TWIN system). The CBD acted as an affinity tag and allowed binding of the fusion protein to a chitin bead column, after which self-cleavage of the intein at its C-terminus was induced, resulting in the release of mature PorA. Cleavage of the fusion protein was temperature- and time-dependent, and was optimal at pH 7.0 after 5 days of storage at 4 degrees C. Efficient cleavage was also dependent on the addition of a minimal amino acid sequence (Gly-Arg-Ala) to the N-terminus of the mature PorA protein. This represented a significant improvement on the large N-terminal sequences introduced by other expression systems previously used to prepare recombinant PorA, and the yields of PorA purified with the IMPACT-TWIN system were similar. Thus, the IMPACT-TWIN system provides a facile method for producing recombinant PorA and may also be useful for the production of other bacterial outer-membrane proteins for vaccine studies.  相似文献   

8.
The production of pure protein is indispensable for many applications in life sciences, however protein purification protocols are difficult to establish, and the experimental procedures are usually tedious and time-consuming. Therefore, a number of tags were developed to which proteins of interest can be fused and subsequently purified by affinity chromatography. We report here on a novel lectin-based affinity tag using the D-mannose-specific lectin LecB from Pseudomonas aeruginosa. A fusion protein was constructed consisting of yellow fluorescent protein and LecB separated by an enterokinase cleavage site. This protein was overexpressed in Escherichia coli Tuner (DE3), and the cell extract was loaded onto a column containing a mannose agarose matrix. Electrophoretically pure fusion protein at a yield of 24 mg/L culture was eluted with a D-mannose containing buffer The determination of equilibrium adsorption isotherms revealed an association constant of the lectin to the mannose agarose matrix of Ka = 3.26 x 10(5)/M. Enterokinase treatment of the purified fusion protein resulted in the complete removal of the LecB-tag. In conclusion, our results indicate that the lectin LecB of P. aeruginosa can be used as a tag for the high-yield one-step purification of recombinant proteins.  相似文献   

9.
In proteomics research, generation of recombinant proteins in their native, soluble form with large quantity is often a challenging task. To tackle the expression difficulties, different expression vectors with distinct affinity fusion tags, i.e. pET-43.1a (N-utilization substance A tag), pMAL-cRI (maltose binding protein tag) (MBP tag), pGEX-4T-2 (glutathione S-transferase tag), and pET-15b (hexahistidine tag) were compared for their effects on the productivity and solubility, which were assessed by SDS-PAGE and immunoblotting, of the integrin betaA domain. The incubation temperatures were tested for its effects on these parameters. Our data suggested that MBP tag enhanced the yield and solubility of the betaA domain protein, which can also be recognized using an anti-CD18 antibody, at room temperature incubation. Thus, the nature of fusion partner chosen for expression in bacteria and its incubation temperature would significantly affect the yield and solubility of the recombinant target protein.  相似文献   

10.
A polypeptide corresponding to the full-length C-terminal cytoplasmic domain of a G-protein-regulated inwardly rectifying potassium channel (Kir3.1) bearing a hexahistidine (His6) tag was produced by DNA recombinant overexpression techniques in Escherichia coli. This permitted the isolation of approximately 5 mg of pure protein per liter of bacterial culture. Further purification by size exclusion chromatography (SEC) of the C-terminal domain revealed that it exists predominantly as a dimer. The secondary structure was estimated using circular dichroism measurements that indicated the presence of approximately 35% beta-sheet and approximately 15% alpha-helix. G-protein betagamma subunits incubated with His-tagged Kir3.1 C-terminal domain, bound to immobilized metal affinity chromatography (IMAC) resin, copurified with the peak of specifically eluted recombinant protein. These observations demonstrate that full-length Kir3.1 C-terminus can be purified in a stable conformation capable of binding proteins known to activate Kir3 channels and may contain elements involved in channel assembly.  相似文献   

11.
The crystal structure of a mutant form of the single-chain fragment (scFv), derived from the monoclonal anti-His tag antibody 3D5, in complex with a hexahistidine peptide has been determined at 2.7 A resolution. The peptide binds to a deep pocket formed at the interface of the variable domains of the light and the heavy chain, mainly through hydrophobic interaction to aromatic residues and hydrogen bonds to acidic residues. The antibody recognizes the C-terminal carboxylate group of the peptide as well as the main chain of the last four residues and the last three imidazole side-chains. The crystals have a solvent content of 77% (v/v) and form 70 A-wide channels that would allow the diffusion of peptides or even small proteins. The anti-His scFv crystals could thus act as a framework for the crystallization of His-tagged target proteins. Designed mutations in framework regions of the scFv lead to high-level expression of soluble protein in the periplasm of Escherichia coli. The recombinant anti-His scFv is a convenient detection tool when fused to alkaline phosphatase. When immobilized on a matrix, the antibody can be used for affinity purification of recombinant proteins carrying a very short tag of just three histidine residues, suitable for crystallization. The experimental structure is now the basis for the design of antibodies with even higher stability and affinity.  相似文献   

12.
Many mammalian proteins are multifunctional proteins with biological activities whose characterization often requires in vitro studies. However, these studies depend on generation of sufficient quantities of recombinant protein and many mammalian proteins cannot be easily expressed and purified as full-length products. One example is the Wilm's tumor gene product, WT1, which has proven difficult to express as a full-length purified recombinant protein using standard approaches. To facilitate expression of full-length WT1 we have developed approaches that optimized its expression and purification in Escherichia coli and mammalian cells. First, using a bicistronic vector system, we successfully expressed and purified WT1 containing a C-terminal tandem affinity tag in 293T cells. Second, using a specific strain of E. coli transformed with a modified GST vector, we successfully expressed and purified N-terminal GST tagged and C-terminal 2x FLAG tagged full-length human WT1. The benefits of these approaches include: (1) two-step affinity purification to allow high quality of protein purification, (2) large soluble tags that can be used for a first affinity purification step, but then conveniently removed with the highly site-specific TEV protease, and (3) the use of non-denaturing purification and elution conditions that are predicted to preserve native protein conformation and function.  相似文献   

13.
A DNA fragment containing 2,079 base pairs from Bacillus circulans CGMCC 1416 was cloned using degenerate PCR and inverse PCR. An open reading frame containing 981 bp was identified that encoded 326 amino acids residues, including a putative signal peptide of 31 residues. The deduced amino acid sequence showed the highest identity (68.1%) with endo-beta-1,4-D-mannanase from Bacillus circulans strain K-1 of the glycoside hydrolase family 5 (GH5). The sequence encoding the mature protein was cloned into the pET-22b(+) vector and expressed in Escherichia coli as a recombinant fusion protein containing an N-terminal hexahistidine sequence. The fusion protein was purified by Ni2+ affinity chromatography and its hexahistidine tag cleaved to yield a 31-kDa beta-mannanase having a specific activity of 481.55 U/mg. The optimal activity of the purified protein, MANB48, was at 58 degrees C and pH 7.6. The hydrolysis product on substrate locust bean gum included a monosaccharide and mainly oligosaccharides. The recombinant MANB48 may be of potential use in the feed industry.  相似文献   

14.
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.  相似文献   

15.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

16.
Kimple ME  Sondek J 《BioTechniques》2002,33(3):578, 580, 584-578, 8 passim
Affinity tags are not only used for the expression and purification of recombinant proteins but also for the detection of protein-protein interactions. Common problems with many affinity tags are excessive length, which may interfere with the structure and function of tagged proteins, and low affinity and/or specificity for primary detection and purification agents. Preliminary results suggest that the C-terminalfive residues of the Drosophila protein NorpA, based on the short, covalent interaction they make with the N-terminal PDZ domain (PDZI) of InaD, are useful as a general affinity tag. First, a PDZI-alkaline phosphatase fusion protein specifically detects both its physiological ligand and a heterologous protein expressing the NorpA C-terminal five residues. The interaction of PDZI with a NorpA-tagged protein is reversible by a reducing agent, which allows nitrocellulose membranes to be stripped completely and reused. In addition, a NorpA-tagged protein can specifically bind to immobilized PDZI resin, while other cellular proteins are washed through. After washing, the NorpA-tagged protein is eluted by a reducing buffer. The NorpA tag's short length makes it the smallest affinity tag available, and its specific and high-affinity interaction with PDZI could yield a powerful system that improves on currently available technology.  相似文献   

17.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

18.
Streptococcus gordonii (S. gordonii) has been used as a gram-positive bacterial expression vector for secreted or surface-anchored recombinant proteins. Fusion of the gram-positive bacterial N-terminal signal sequence to the target protein is all that is required for efficient export. This system is termed SPEX for Surface Protein EXpression and has been used to express proteins for a variety of uses. In this study, the SPEX system has been further developed by the construction of vectors that express polyhistidine-tagged fusion proteins. SPEX vectors were constructed with an N-terminal or C-terminal histidine tag. The C-repeat region (CRR) from Streptococcus pyogenes M6 protein and the Staphylococcus aureus nuclease A (NucA) enzyme were tested for expression. The fusion proteins were purified using metal affinity chromatography (MAC). Results show that the fusion proteins were expressed and secreted from S. gordonii with the His tag at either the N- or C-terminal position and could be purified using MAC. The M6 fusions retained immunoreactivity after expression and purification as determined by immunoblots and ELISA analyses. In addition, NucA fusions retained functional activity after MAC purification. The M6-His and NucA-His fusions were purified approximately 15- and 10-fold respectively with approximately 30% recovery of protein using MAC. This study shows that the polyhistidine tag in either the N- or C-terminal position is a viable way to purify secreted heterologous proteins from the supernatant of recombinant S. gordonii cultures. This study further illustrates the value of the SPEX system for secreted expression and purification of proteins.  相似文献   

19.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

20.
In this report, we describe the recombinant SLO expression as a fusion protein with a C-terminal hexahistidine tag and its purification using immobilized metal affinity expanded bed adsorption (STREAMLINE(trade mark) Chelating). In order to facilitate downstream processing of the purification, an efficient fermentation process was developed focusing on the achievement of high yields of soluble protein. The purification strategy resulted in a 40% recovery of active recombinant SLO and the protein was purified eight-fold. SDS-PAGE and Western-blot analysis of the purified protein revealed the presence of a 75 Mr form, which was the estimated relative Mass of the recombinant SLO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号