首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class III adenylate cyclases (ACs) are widespread signaling proteins, which translate diverse intracellular and extracellular stimuli into a uniform intracellular signal. They are typically composed of an N-terminal array of input domains and transducers, followed C-terminally by a catalytic domain, which, as a dimer, generates the second messenger cAMP. The input domains, which receive stimuli, and the transducers, which propagate the signals, are often found in other signaling proteins. The nature of stimuli and the regulatory mechanisms of ACs have been studied experimentally in only a few cases, and even in these, important questions remain open, such as whether eukaryotic ACs regulated by G protein-coupled receptors can also receive stimuli through their own membrane domains. Here we survey the current knowledge on regulation and intramolecular signal propagation in ACs and draw comparisons to other signaling proteins. We highlight the pivotal role of a recently identified cyclase-specific transducer element located N-terminally of many AC catalytic domains, suggesting an intramolecular signaling capacity.  相似文献   

2.
3.
4.
5.
Lectins from Helix pomatia, Canavalia ensiformis, Agaricus bisporus and Triticum vulgaris agglutinated cultures of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. This agglutination was specific as it was inhibited (except with A. bisporus lectin) by the competing sugar substrates. The ability of three of these lectins, immobilized on a variety of supports, to separate these micro-organisms from pure cultures was investigated. Immobilization of the lectins on magnetic microspheres was the most effective method. Immobilized T. vulgaris lectin bound 87–100% of cells from cultures of L. monocytogenes , 80–100% of Staph. aureus , 33–45% of Salmonella spp. and 42–77% of E. coli. The A. bisporus lectin bound 31–63% of cells in cultures of L. monocytogenes , 83% of Staph. aureus but only 3–5% of the salmonella cells. Similarly H. pomatia lectin bound >92% of Staph. aureus and 64% of L. monocytogenes cells but was poor at binding the Gram-negative organisms. This preference for binding Gram-positive organisms was confirmed when mixed cultures were studied. The T. vulgaris lectin was effective in removing L. monocytogenes (43%) and Staph. aureus (26%) from diluted milk and Salmonella (31–54%) from raw egg. Agaricus bisporus lectin removed L. monocytogenes from undiluted milk (10–47%) or ground beef (32–50%).  相似文献   

6.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

7.
Mature B cells co-express on their cell surface two classes of antigen receptor, the IgM and IgD immunoglobulins. The structural and functional differences between the two receptor classes are poorly understood. Recently two proteins of 29 and 31 kDa (BAP29 and BAP31) have been described that are preferentially associated with membrane IgD but only weakly with membrane IgM. We describe here the cloning of full-length murine and human BAP31 cDNAs encoding proteins of 245 and 246 amino acids respectively. The two BAP31 proteins are 95% identical. The BAP31 gene is ubiquitously expressed in murine tissues and is located on the X chromosome in both mouse and man. The murine BAP31 protein has 43% sequence identity to murine BAP29. Both proteins have a hydrophobic N-terminus and an alpha-helical C-terminus which ends with a KKXX motif implicated in vesicular transport. By a mutational analysis we have identified amino acids in the transmembrane sequence of the delta m chain that are critical for binding to BAP31/BAP29. A structural model of the BAPs and their potential functions are discussed.  相似文献   

8.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors  相似文献   

9.
Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.  相似文献   

10.
Membrane-binding peripheral proteins play important roles in many biological processes, including cell signaling and membrane trafficking. Unlike integral membrane proteins, these proteins bind the membrane mostly in a reversible manner. Since peripheral proteins do not have canonical transmembrane segments, it is difficult to identify them from their amino acid sequences. As a first step toward genome-scale identification of membrane-binding peripheral proteins, we built a kernel-based machine learning protocol. Key features of known membrane-binding proteins, including electrostatic properties and amino acid composition, were calculated from their amino acid sequences and tertiary structures, which were then incorporated into the support vector machine to perform the classification. A data set of 40 membrane-binding proteins and 230 non-membrane-binding proteins was used to construct and validate the protocol. Cross-validation and holdout evaluation of the protocol showed that the accuracy of the prediction reached up to 93.7% and 91.6%, respectively. The protocol was applied to the prediction of membrane-binding properties of four C2 domains from novel protein kinases C. Although these C2 domains have 50% sequence identity, only one of them was predicted to bind the membrane, which was verified experimentally with surface plasmon resonance analysis. These results suggest that our protocol can be used for predicting membrane-binding properties of a wide variety of modular domains and may be further extended to genome-scale identification of membrane-binding peripheral proteins.  相似文献   

11.
12.
13.
The temporal and spatial expression of antigen specific for primary mesenchyme cell (PMC) lineage cells during early development of the sea urchins Hemicentrotus pulcherrimus and Stronglyocentrotus nudus was studied with a monoclonal antibody (P4). P4 was produced by a hybridoma cell line prepared by fusion of myeloma cells and spleen cells from a mouse immunized with cultured spicule-forming cells. Immunofluorescence studies demonstrated that P4 antibody reacted strongly with the surfaces of PMC's and spicule-forming cells of both species. Immunoblot analysis showed that P4 antibody reacted with several proteins including those of 140–kDa, 120–kDa, 53-kDa, 43–kDa, and 41–kDa in H. pulcherrimus and with those of 130–kDa, 110–kDa, 51–kDa, and 43–kDa in S. nudus . These proteins appeared sequentially after the hatching blastula stage. Tunicamycin inhibited the expressions of these P4 antigens as well as spicule formation. Two of the P4-reactive antigens, the 140–kDa and 43–kDa proteins, in H. pulcherrimus were synthesized de novo and shown to be identical to micromere differentiation specific proteins. These results suggest that P4 binds to specific molecules that are important in spicule formation in developing sea urchin embryos.  相似文献   

14.
Vav proteins, masters of the world of cytoskeleton organization   总被引:7,自引:0,他引:7  
Vav proteins are evolutionarily conserved from nematodes to mammals and play a pivotal role in many aspects of cellular signaling, coupling cell surface receptors to various effectors functions. In mammals, there are three family members; Vav1 is specifically expressed in the hematopoietic system, whereas Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain multiple domains that enable their function in various fashions. The participation of the Vav proteins in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation will be discussed in this review. We will also cover how the Vav proteins succeed in controlling these processes by their function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. The contribution of the Vav proteins in a GEF-independent manner to the organization of the cytoskeleton will also be deliberated. The scope of this review is to highlight the numerous roles of the Vav signal transducer proteins in actin organization.  相似文献   

15.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Gα protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Gα are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (β2–β3, α2–β4, α3–β5, and α4–β6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gβγ. However, the constitutive activity caused by the F344C and E335C mutations in the α2–β4 loop and F378C in the α3–β5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gβγ. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the β2–β3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Gα contribute to activation of signaling.  相似文献   

16.
17.
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70, prompts these portions of the plasma membrane to be considered as “glycosignaling domains.” In particular, during T cell activation and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains, where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling complex involved in cell-cell interaction, signal transduction, and cell activation. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
To study the biochemical properties of SSB's from Deinococcus grandis (DgrSSB) and Deinococcus proteolyticus (DprSSB), we have cloned the ssb genes obtained by PCR and have developed Escherichia coli overexpression systems. The genes consist of an open reading frame of 891 (DgrSSB) and 876 (DprSSB) nucleotides encoding proteins of 296 and 291 amino acids with a calculated molecular mass of 32.29 and 31.33 kDa, respectively. The amino-acid sequence of DgrSSB exhibits 45%, 44% and 82% identity and the amino-acid sequence of DprSSB reveals 43%, 43% and 69% identity with Thermus aquaticus (TaqSSB), Thermus thermophilus (TthSSB) and Deinococcus radiodurans SSBs, respectively. We show that DgrSSB and DprSSB are similar to Thermus/Deinococcus SSBs in their biochemical properties. They are functional as homodimers, with each monomer encoding two single-stranded DNA binding domains (OB-folds). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 33 nt per homodimer. In a complementation assay in E. coli, DgrSSB and DprSSB took over the in vivo function of EcoSSB. Thermostability with half-lives of about 1 min at 65-67.5 degrees C make DgrSSB and DprSSB similar to the known SSB of Deinococcus radiodurans (DraSSB).  相似文献   

19.

Background  

PDZ domain is a well-conserved, structural protein domain found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can bind to the C-terminal peptides of different proteins and act as glue, clustering different protein complexes together, targeting specific proteins and routing these proteins in signaling pathways. These domains are classified into classes I, II and III, depending on their binding partners and the nature of bonds formed. Binding specificities of PDZ domains are very crucial in order to understand the complexity of signaling pathways. It is still an open question how these domains recognize and bind their partners.  相似文献   

20.
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号