首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanical properties of collagen fascicles from the rabbit patellar tendon   总被引:1,自引:0,他引:1  
Tensile and viscoelastic properties of collagen fascicles of approximately 300 microns in diameter, which were obtained from rabbit patellar tendons, were studied using a newly designed micro-tensile tester. Their cross-sectional areas were determined with a video dimension analyzer combined with a CCD camera and a low magnification microscope. There were no statistically significant differences in tensile properties among the fascicles obtained from six medial-to-lateral locations of the patellar tendon. Tangent modulus, tensile strength, and strain at failure of the fascicles determined at about 1.5 percent/s strain rate were 216 +/- 68 MPa, 17.2 +/- 4.1 MPa, and 10.9 +/- 1.6 percent (mean +/- S.D.), respectively. These properties were much different from those of bulk patellar tendons; for example, the tensile strength and strain at failure of these fascicles were 42 percent and 179 percent of those of bulk tendons, respectively. Tangent modulus and tensile strength of collagen fascicles determined at 1 percent/s strain rate were 35 percent larger than those at 0.01 percent/s. The strain at failure was independent of strain rate. Relaxation tests showed that the reduction of stress was approximately 25 percent at 300 seconds. These stress relaxation behavior and strain rate effects of collagen fascicles differed greatly from those of bulk tendons. The differences in tensile and viscoelastic properties between fascicles and bulk tendons may be attributable to ground substances, mechanical interaction between fascicles, and the difference of crimp structure of collagen fibrils.  相似文献   

2.
The effect of a lathyritic diet on the sensitivity of tendon to strain rate   总被引:1,自引:0,他引:1  
While the tensile failure properties of rat-tail tendon depend on strain rate, the sensitivity to strain rate decreases with age, especially during sexual maturation. The object of this study was to determine the effect of an experimental model of chronic lathyrism on age-dependent changes in the sensitivity of developing tendon strength to strain rate. Tensile failure experiments were conducted at high and low strain rate on tendons excised from test and control animals aged 1 to 6 mo. The tensile "yield" response of tendon was significantly affected by the diet resulting in a reduced tensile strength and failure strain. While the sensitivity of tendon failure to strain rate was slightly elevated by the experimental diet, age-dependent changes compared with controls. Since the diet supplement is thought to inhibit covalent crosslinking of collagen in the developing tendon, other factors are likely responsible for decrease in the sensitivity of tendon strength to strain rate during maturation.  相似文献   

3.
Tendons have complex mechanical behaviors that are nonlinear and time dependent. It is widely held that these behaviors are provided by the tissue composition and structure. It is generally thought that type I collagen provides the primary elastic strength to tendon while proteoglycans, such as decorin, play a role in failure and viscoelastic properties. This study sought to quantify such structure-function relationships by comparing tendon mechanical properties between normal mice and mice genetically engineered for altered type I collagen content and absence of decorin. Uniaxial tensile ramp to failure experiments were performed on tail tendon fascicles at two strain rates, 0.5%/s and 50%/s. Mutations in type I collagen led to reduced failure load and stiffness with no changes in failure stress, modulus or strain rate sensitivity. Fascicles without decorin had similar elastic properties to normal fascicles, but reduced strain rate sensitivity. Fascicles from immature mice, with increased decorin content compared to adult fascicles, had inferior elastic properties but higher strain rate sensitivity. These results showed that tendon viscoelasticity is affected by decorin content but not by collagen alterations. This study provides quantitative evidence for structure-function relationships in tendon, including the role of proteoglycan in viscoelasticity.  相似文献   

4.
The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.  相似文献   

5.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

6.
The tensile strength of skin is associated, in part, with its potential for laceration from impact. The quasi-static tensile strength of skin depends on orientation. The objective of this study was to determine whether the strength of skin in high speed tensile failure experiments exhibits a similar dependence on orientation. Tensile experiments were conducted at 6000 percent/s and 30 percent/s on dorsal skin of rats aged 1-6 months. Experiments were performed on specimens cut perpendicularly and longitudinally to the spine at cranial and caudal locations. The tensile failure properties depended on location, orientation, age and strain rate. The strength was dependent on orientation to the same degree in high and low speed tests. This helps explain why accident statistics show that skin lacerates preferentially on the body.  相似文献   

7.
The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of tendon’s key structural component to strain rate sensitivity. We have investigated the structure of the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples were pulled to the same percent elongation, the fibrils were noticed to elongate differently, increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would help establish a basis for future development of constitutive models and assist in tissue replacement design.  相似文献   

8.
The biomechanics of tendon healing was investigated with unsutured rat achilles tendons. After two, three, and four weeks of healing tensile parameters were assayed with a bone-muscle-tendon-bone preparation elongated to failure at a controlled physiological strain rate.

In the third week of healing, stiffness, strength, and energy absorbing capacity all increased approximately 50%. These changes correlated with early fibroplasia.

In the fourth week of healing, strength, energy absorbing capacity and elongation to failure all increased relatively more than stiffness. Histologically, larger fibers with better longitudinal alignment developed during this period.

At the end of four weeks the tendon's strength was approximately 25% of normal.

To summarize, the return of stiffness in a healing tendon preparation correlated with the presence of fibroplasia and the return of other tensile parameters was a function of the amount and organization of the fibroplasia.  相似文献   


9.
目的:通过对比通道辅助跟腱微创缝合方式(CAMIR)与2种临床最常用的跟腱缝合方式的生物力学强度,验证CAMIR微创缝合方式同样能够达到常规缝合方式的力学强度,为临床推广应用提供可靠的理论依据。方法:将27支跟腱样本随机分为3组(每组9支),分别是CAMIR组、经典微创Ma-Griffith组、标准切开Krackow组。所有跟腱样本首先预加载50N,2min。然后以20N-100N,1Hz,循环1000次。如果缝合未失效,则以20 mm/s的速度将样本拉伸至失效。通过实验仪上的传感器自动记录循环1000次时整个缝合结构的伸长量,记录拉伸失效时整个缝合结构的伸长量以及最大负荷,并计算单纯拉伸阶段缝合结构的抗拉伸硬度。结果:CAMIR的循环1000次结束时伸长量(P=0.581)、缝合失效时伸长量(P=0.799)、缝合失效时最大负荷(P=0.278)、单纯拉伸过程中抗应变硬度(P=0.935)与常用的Ma-Griffith、Krackow缝合方式均无明显差异。结论:CAMIR缝合方式强度可靠,为术后进行早期功能康复训练提供力学保障,同时能够有效避免腓肠神经损伤,是临床上值得推荐的微创缝合方式。  相似文献   

10.
The aim of this article is to present two new techniques for digital flexor tendon repair: a modification to the conventional Kessler technique (wrap core suture) and tendon splints (H-shaped splint). These techniques were aimed at enhancing the biomechanical properties of such repairs as related to resistance to both gap formation and repair failure. Comparing (in an ex vivo study) the tensiometric properties (gap formation and failure strengths) of 24 flexor digitorum profundus tendons repaired with the described techniques (12 repairs per each technique) and the conventional Kessler repair (24 repairs), we found that the former provided significantly stronger repairs than the latter in vitro. A statistically significant difference (p < 0.001) was found between each of the two presented techniques and the Kessler repair. The wrap core suture increased the load at which a visible (1 mm) gap formed by 22.6 percent when compared with the conventional Kessler suture. The mean gap strength of the wrap core repair was 6.5 N, whereas that of the conventional Kessler was 5.3 N. The failure loads (ultimate strength) of the wrap core suture were 33.8 percent higher than those of the conventional Kessler. The mean breaking load of the wrap core repair was 19.4 N, whereas that of the conventional Kessler was 14.5 N. The H-splint repair increased the load at which a visible gap formed and the failure loads (ultimate strength) by 158.5 and 333.1 percent, respectively, when compared with the conventional Kessler suture. The mean gap strength of the H-splint repair was 13.7 N, and its mean breaking load was 62.8 N.  相似文献   

11.
The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability’s were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40°C in collagen solution, near 112°C in collagen film, and near 101°C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.  相似文献   

12.
Following surgical Achilles tendon reconstruction surgery, there is a distinct trend towards an early and faster rehabilitation protocol to avoid muscle atrophy. However, this procedure involves the risk of a higher complication rate. In order to reduce the occurrence of re-ruptures and pathological tendon extensions, a tendon reconstruction with the highest possible primary stability is desirable. Therefore, the aim of this study was to determine if augmentation using synthetic polyester tapes (QuadsTape™) could provide greater primary stability in case of different tendon suture techniques.90 tendons of the superficial toe flexor of pigs were divided into 9 groups. The reconstruction method was combined using the factors suture technique (Kessler and Bunnell), augmentation (non-augmented and augmented with QuadsTape™) and defect type (end-to-end and 10 mm gap). The biomechanical measurements were performed on a material testing machine and consisted of a creep test, a cyclic test and a tear-off test. This study compared creep strain, ultimate load failure, maximum stress and stiffness.Irrespective of the type of defect involved, augmentation of the tendon sutures led to a significant increase of the maximum force (not augmented: 82.30 ± 25.48 N, augmented: 135.73 ± 30.69 N, p < 0.001) and the maximum stress (not augmented: 2.26 ± 0.83 MPa, augmented: 4.13 ± 1.79 MPa, p < 0.001). Furthermore, there was a non-significant increase in stiffness and no significant differences were observed with respect to creep strain.Augmentation of Achilles tendon reconstruction using QuadsTape™ increases composite strength and stiffness in the in vitro model, thus potentially contributing to the feasibility of early rehabilitation programs. Biological factors still need to be investigated in order to formulate appropriate indications.  相似文献   

13.
Tendon functionality is related to its mechanical properties. Tendon damage leads to a reduction in mechanical strength and altered biomechanical behavior, and therefore leads to compromised ability to carry out normal functions such as joint movement and stabilization. Damage can also accumulate in the tissue and lead to failure. A noninvasive method with which to measure such damage potentially could quantify structural compromise from tendon injury and track improvement over time. In this study, tendon mechanics are measured before and after damage is induced by "overstretch" (strain exceeding the elastic limit of the tissue) using a traditional mechanical test system while ultrasonic echo intensity (average gray scale brightness in a B-mode image) is recorded using clinical ultrasound. The diffuse damage caused by overstretch lowered the stress at a given strain in the tissue and decreased viscoelastic response. Overstretch also lowered echo intensity changes during stress relaxation and cyclic testing. As the input strain during overstretch increased, stress levels and echo intensity changes decreased. Also, viscoelastic parameters and time-dependent echo intensity changes were reduced.  相似文献   

14.
The high water content of the intervertebral disc is essential to its load bearing function and viscoelastic mechanical behavior. One of the primary biochemical changes associated with disc degeneration is the loss of proteoglycans, which leads to tissue dehydration. While previous studies have reported the effects of in vivo degeneration on annulus fibrosus (AF) failure mechanics, the independent role of water remains unclear, as does the tissue’s rate-dependent failure response. Our first objective was to determine the effect of loading rate on AF failure properties in tension; our second objective was to quantify the effect of water content on failure properties. Water content was altered through enzymatic digestion of glycosaminoglycans (GAGs) and through osmotic loading. Bovine AF specimens were tested monotonically to failure along the circumferential direction at 0.00697%/s or 6.97%/s. Increased loading rate resulted in a ∼50% increase in linear-region modulus, failure stress, and strain energy density across all treatment groups (p < 0.001). Decreased GAG and water contents resulted in decreased modulus, failure stress, and strain energy density; however, these differences were only observed at the low loading rate (p < 0.05; no changes at high rate). Osmotic loading was used to evaluate the effect of hydration independently from GAG composition, resulting in similar decreases in water content, modulus, and strain energy density. This suggests that hydration is essential for maintaining tissue stiffness and energy absorption capacity, rather than strength, and that GAGs contribute to tissue strength independently from mediating water content.  相似文献   

15.
The ultrasonography contributes to investigate in vivo tendon force-strain relationship during isometric contraction. In previous studies, different methods are available to estimate the tendon strain, using different loading rates and models to fit the tendon force-strain relationship. This study was aimed to propose a standard method to characterize the in vivo tendon force-strain relationship. We investigated the influence on the force-strain relationship for medialis gastrocnemius (MG) of (1) one method which takes into account probe and joint movements to estimate the instantaneous tendon length, (2) models used to fit the force-strain relationship for uniaxial test (polynomial vs. Ogden), and (3) the loading rate on tendon strain. Subjects performed ramp-up contraction during isometric contractions at two different target speeds: 1.5s and minimal time with ultrasound probe fixed over the muscle-tendon junction of the MG muscle. The used method requires three markers on ultrasound probe and a marker on calcaneum to take into account all movements, and was compared to the strain estimated using ultrasound images only. The method using ultrasound image only overestimated the tendon strain from 40% of maximal force. The polynomial model showed similar fitting results than the Ogden model (R2=0.98). A loading rate effect was found on tendon strain, showing a higher strain when loading rate decreases. The characterization of tendon force-strain relationship needs to be standardized by taking into account all movements to estimate tendon strain and controlling the loading rate. The polynomial model appears to be appropriate to represent the tendon force-strain relationship.  相似文献   

16.
The molecular basis of nonlinear optical (NLO) chiral effects in the amide I region of type I collagen was investigated using sum-frequency generation vibrational spectroscopy; chiral and achiral tensor elements were separated using different input/output beam polarization conditions. Spectra were obtained from native rat tail tendon (RTT) collagen and from cholesteric liquid crystal-like (LC) type I collagen films. Although RTT and LC collagen both possess long-range order, LC collagen lacks the complex hierarchical organization of RTT collagen. Their spectra were compared to assess the role of such organization in NLO chirality. No significant differences were observed between RTT and LC with respect to chiral or achiral spectra. These findings suggest that amide I NLO chiral effects in type I collagen assemblies arise predominantly from the chiral organization of amide chromophores within individual collagen molecules, rather than from supramolecular structures. The study suggests that sum-frequency generation vibrational spectroscopy may be uniquely valuable in exploring fundamental aspects of chiral nonlinearity in complex macromolecular structures.  相似文献   

17.
Connective tissues such as ligament, tendon and skin are composites of strength-bearing collagen fibers embedded in a hydrated matrix. The tensile response and failure properties of rat-tail tendon are thought to represent those of the collagen fiber itself. In this study, the tensile failure properties of rat-tail tendon (tendon collagen) were determined for specimens of various test length. The experimental results indicated that failure strain, based on the test grip-to-grip dimension, and failure strain energy density decreased as specimen length increased. The failure stress, on the other hand, did not change appreciably with specimen length. Thus, tensile failure data cannot simply be normalized by the grip-to-grip length of the test specimen. Experimental data from various laboratories must clearly document the length of the test specimen.  相似文献   

18.
We previously found that interleukin (IL)-1beta is over-expressed in the fibroblasts of the stress-shielded patellar tendon using a stress-shielding model [Uchida, H., Tohyama, H., Nagashima, K., Ohba, Y., Matsumoto, H., Toyama, Y., Yasuda, K., 2005. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. Journal of Biomechanics 38(4), 791-798.]. Therefore, IL-1beta may play a role in tendon deterioration in response to stress deprivation. This study was conducted to clarify the effects of local administration of interleukin-1 receptor antagonist (IL-1ra) on the mechanical properties of the stress-shielded patellar tendon as well as the tendon fascicles harvested from it. Twenty-six mature rabbits were equally divided into Groups IL-1ra and PBS after the right patellar tendon underwent the stress-shielding treatment, which completely released the patellar tendon from tension by stretching the flexible wire installed between the patella and the tibial tubercle. In Group IL-1ra, IL-1ra was injected between the patellar tendon and the infra-patellar fat pad. In Group PBS, phosphate-buffered saline was injected in the same manner as IL-1ra. All rabbits were evaluated at 3 weeks after the stress-shielding procedure. The tangent modulus and the tensile strength of the patellar tendons were significantly greater in Group IL-1ra than in Group PBS, while there was no significant difference in the strain at failure between Groups IL-1ra and PBS. Concerning the mechanical properties of the fascicles harvested from the patellar tendon, however, we could not detect any significant differences in the tangent modulus, tensile strength, or strain at failure between Groups IL-1ra and PBS. The present study suggested that IL-1 plays an important role in the deterioration of the mechanical properties of the patellar tendon in response to stress shielding and that IL-1 does not affect the fascicles themselves.  相似文献   

19.
Mechanical testing of collagenous tissues at different length scales will provide improved understanding of the mechanical behavior of structures such as skin, tendon, and bone, and also guide the development of multiscale mechanical models. Using a microelectromechanical-systems (MEMS) platform, stress-strain response curves up to failure of type I collagen fibril specimens isolated from the dermis of sea cucumbers were obtained in vitro. A majority of the fibril specimens showed brittle fracture. Some displayed linear behavior up to failure, while others displayed some nonlinearity. The fibril specimens showed an elastic modulus of 470 ± 410 MPa, a fracture strength of 230 ± 160 MPa, and a fracture strain of 80% ± 44%. The fibril specimens displayed significantly lower elastic modulus in vitro than previously measured in air. Fracture strength/strain obtained in vitro and in air are both significantly larger than those obtained in vacuo, indicating that the difference arises from the lack of intrafibrillar water molecules produced by vacuum drying. Furthermore, fracture strength/strain of fibril specimens were different from those reported for collagenous tissues of higher hierarchical levels, indicating the importance of obtaining these properties at the fibrillar level for multiscale modeling.  相似文献   

20.
The aim of the present study was to examine whether or not the compliance of the gastrocnemius medialis (GM) tendon and aponeurosis is influenced by submaximal fatiguing efforts. Fourteen elderly male subjects performed isometric maximal voluntary plantarflexion contractions (MVC) on a dynamometer before and after two fatiguing protocols. The protocols consisted of: (1) submaximal concentric isokinetic contractions (70% isokinetic MVC) at 60 degrees /s and (2) a sustained isometric contraction (40% isometric MVC) until failure to hold the defined moment. Ultrasonography was used to determine the elongation and strain of the GM tendon and aponeurosis. To account for the axis misalignment between ankle and dynamometer, the kinematics of the leg were captured at 120 Hz. The maximum moment decreased from 85.9+/-17.9 Nm prior fatigue to 79.2+/-19 Nm after isokinetic fatigue and to 69.9+/-16.4 Nm after isometric fatigue. The maximal strain of the GM tendon and aponeurosis before fatigue, after isokinetic and after isometric fatigue were 4.9+/-1.1%, 4.4+/-1.1% and 4.3+/-1.1% respectively. Neither the strain nor the elongation showed significant differences before and after each fatiguing task at any 100 N step of the calculated tendon force. This implies that the compliance was not altered after either the isokinetic or the isometric fatiguing task. Therefore it was concluded that the strains during the performed submaximal fatiguing tasks, were too small to provoke any structural changes in tendon and aponeurosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号