首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2-Ethynylnaphthalene (2EN) had previously been demonstrated to be a mechanism-based inactivator of rat cytochrome P450 (P450) 1A2 [Hammons, G.J., Alworth, W.L., Hopkins, N.E., Guengerich, F. P., & Kadlubar, F. F. (1989) Chem. Res. Toxicol. 2, 367-374]. In this work 2EN was also demonstrated to be a useful inactivator of rabbit P450 1A2 (k(inactivation) 0.094 min-1, K(i) 11 microM) but it did not inactivate human P450 1A2, although the sequences of the three proteins are approximately 80% identical. Rat and rabbit P450 1A2 were modified by incubation with NADPH-P450 reductase, NADPH, and [3H]2EN to levels of 0.35 and 0.47 nmol of adduct (nmol of P450)-1, respectively. In each case only a single tryptic peptide was labeled; recovery of labeled peptides was low under the acidic HPLC conditions. The rabbit P450 1A2 peptide FQELMAAVGR (positions 175-184) and the rat P450 1A2 peptide L(S)QQYGDVLQIR (positions 67-78) were identified. 4-Azidobiphenyl (4-N3BP) was developed as a photoaffinity label for P-450 1A2 proteins because of its similarity to 4-aminobiphenyl, a known substrate for the enzymes. 4-N3BP was shown to be photolyzed with 350-nm light and radioactive label could be incorporated into rat P450 1A2. Labeling of the protein was found to be saturable with increasing concentrations of 4-N3BP and up to 0.59 nmol of label could be incorporated (nmol P450 1A2)-1. The substrate 4-aminobiphenyl and the competitive inhibitor 7,8-benzoflavone blocked photolabeling of P450 1A2 with 4-N3BP, and 4-N3BP inhibited N-hydroxylation of 4-aminobiphenyl by P450 1A2 in the usual enzyme assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3-azidiamantane (DIA-N2) has been shown to be a photolabile carbene-generating probe interacting specifically with cytochrome P450 (P450) active centre. To evaluate the modification of P450 by the probe, radiolabelled [9-3H]-3-azidiamantane was prepared by reductive dehalogenation of its precursor, 3-oxo-9-bromodiamantane ethylene ketal. The synthesis was optimized as the proper precursor and reaction conditions were concerned to produce 96% pure product (overall yield 59%). An incorporation efficacy of the probe photoactivated at 366 nm was examined with two different proteins, BSA and rat phenobarbital-inducible P450 2B1, both having hydrophobic binding sites. Under photolysis the photoaffinity probe generated short-lived (> 90%) intermediates binding immediately to the protein. The yield of photoactivated DIA-N2 incorporation was 12% and 11% for BSA and P450, respectively. The presence of reduced glutathione, a scavenger of reactive intermediates, did not affect the probe incorporation markedly. On the other hand, scavengers entering the P450 active centre, methanol and dithiothreitol, reduced the protein labelling by 36% and 42%, respectively. Similarly, at DIA-N2, aminopyrine (substrates), and metyrapone (inhibitor) 50 times molar excess over the probe, prevented its binding by about 40%. In addition, when photoaffinity labelling was carried out with microsomal preparation, the substrate with a high affinity for the P450 2B1, diamantane, (at 20 times molar excess to the probe) caused 47% inhibition of the P450 covalent labelling. These results, suggesting a high specificity of the probe binding, show that it can be applied as a photoaffinity probe for cytochrome P450 2B1 active centre studies.  相似文献   

3.
Gartner CA  Wen B  Wan J  Becker RS  Jones G  Gygi SP  Nelson SD 《Biochemistry》2005,44(6):1846-1855
Cytochrome P450 3A4 is a drug-metabolizing enzyme of extraordinarily broad substrate specificity. This quality imparts upon the enzyme special importance in understanding its determinants of activity and substrate recognition. Limited successes in P450 3A4 active-site structure studies have been achieved by use of mechanism-based inactivators and photoaffinity ligands. We report here the potential of photochromic agents, compounds with the ability to undergo light-induced, reversible reactions, to be used as effective photoaffinity ligands. Four such compounds of the chromene family were shown by ultraviolet and visible spectroscopy to undergo photoinduced rearrangements to highly conjugated and reactive products in buffered aqueous solution. While some of these intermediates were very long-lived (>12 h, photoactivated lapachenole), others existed for milliseconds in their opened forms (precocene I and 2,2-dimethyl-5,6-benzo-2H-chromene) and were observed by laser flash photolysis. Each of the tricyclic structures studied rapidly underwent Michael addition reactions with the test nucleophile glutathione upon irradiation to form single conjugated products. The smaller precocene I reacted more extensively to form multiple products. These attributes of the chromenes inspired testing of their potential to label cytochrome P450 3A4 in a light-dependent fashion. Access to the protein active site by lapachenole was demonstrated with the molecule's ability to competitively inhibit P450 3A4-mediated oxidative metabolism of midazolam with an IC(50) value of 71 microM. This inhibition became irreversible upon irradiation of the enzyme-ligand complex with ultraviolet light. These results clearly demonstrate that chromenes are effective photoaffinity reagents for the cytochrome P450 superfamily of enzymes and probably other proteins as well.  相似文献   

4.
A putative binding region for cumene hydroperoxide in the active site of cytochrome P4501A1 was identified using photoaffinity labeling. Thr501 was determined as the most likely site of modification by azidocumene used as the photoaffinity label (T. Cvrk and H. W. Strobel, (1998) Arch. Biochem. Biophys. 349, 95-104). To evaluate further the role of this amino acid residue a site-directed mutagenesis approach was employed. P4501A1 wild type and two mutants, P4501A1Glu501 and P4501A1Phe501, were expressed in and purified from Escherichia coli and used for kinetic analysis to confirm the role of Thr501 residue in cumene hydroperoxide binding. The mutation resulted in a two- to fourfold decrease in the rate of heme degradation in the presence of 0.5 mM cumene hydroperoxide. The mutations do not prevent or significantly alter binding of the tested substrates; however, binding of 2-phenyl-2-propanol (product generated from cumene hydroperoxide) to P4501A1Glu501 and P4501A1Phe501 exhibited four- and eightfold decreases, respectively, suggesting that the mutations strongly affected the affinity of cumene hydroperoxide for the P4501A1 active site. The kinetic analysis of cumene hydroperoxide-supported reactions showed that both mutants exhibit increased Km and decreased VMax values for all tested substrates. Furthermore, the mutations affected product distribution in testosterone hydroxylation. On the basis of P4501A1Glu501 and P4501A1Phe501 characterization, it can be concluded that Thr501 plays an important role in cumene hydroperoxide/P4501A1 interaction.  相似文献   

5.
Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP-binding site of the EGF-receptor kinase with apparent high affinity and that this analogue is an effective photoaffinity label for the kinase. Furthermore, these studies demonstrate that the EGF receptor, identified by using monoclonal antibodies, contains an ATP-binding site, providing further confirmation that the EGF receptor and EGF-dependent protein kinase are domains of the Mr 170000 protein.  相似文献   

6.
A novel fluorescent photoactive probe 7-azido-4-methylcoumarin (AzMC) has been characterized for use in photoaffinity labeling of the substrate binding site of human phenol sulfotransferase (SULT1A1 or P-PST-1). For the photoaffinity labeling experiments, SULT1A1 cDNA was expressed in Escherichia coli as a fusion protein to maltose binding protein (MBP) and purified to apparent homogeneity over an amylose column. The maltose moiety was removed by Factor Xa cleavage. Both MBSULT1A1 and SULT1A1 were efficiently photolabeled with AzMC. This labeling was concentration dependent. In the absence of light, AzMC competitively inhibited the sulfation of 4MU catalyzed by SULT1A1 (Ki = 0.47 +/- 0.05 mM). Moreover, enzyme activity toward 2-naphthol was inactivated in a time- and concentration-dependent manner. SULT1A1 inactivation by AzMC was protected by substrate but was not protected by cosubstrate. These results indicate that photoaffinity labeling with AzMC is highly suitable for the identification of the substrate binding site of SULT1A1. Further studies are aimed at identifying which amino acids modified by AzMC are localized in the binding site.  相似文献   

7.
Recently, we showed that the major species of beta-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5-7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8-12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5-6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.  相似文献   

8.
In the present paper, the heterogeneity of hepatic cytochrome P-450 isoenzymes in the mouse has been probed, using warfarin as the substrate. Both sex and strain differences in the in vitro microsomal metabolism of warfarin have been investigated in male and female warfarin-resistant HC and warfarin-susceptible LAC-grey mouse strains. Animals were either untreated or treated with the cytochrome P-450 inducers phenobarbitone, beta-napthoflavone or clofibrate. In both sexes and strains of mice, metabolism of warfarin was stereoselective in favour of the R(+) enantiomer. However, regioselectively was different in both strains and sexes of untreated animals. After pretreatment with phenobarbitone, increases in the rate of formation of 4' and 7-hydroxy R(+) and S(-) warfarin metabolites in HC mice were observed, compared with untreated animals. In LAC-grey mice increases in 4'-, 6-, 7- and 8-hydroxy R(+) and S(-) warfarin metabolites were noted, compared with untreated animals. This data indicated that different amounts or forms of cytochrome P-450s were responsible for warfarin metabolism after phenobarbitone treatment in the two strains. Pretreatment of animals with beta-napthoflavone resulted in significant decreases in the rat of R(+) warfarin metabolism in both strains and sexes of mice indicating that the beta-naphthoflavone-inducible cytochrome P-450 isoenzymes were less active in the metabolism of warfarin, as compared to the uninduced isoenzymes. In addition, the cytochrome P-450 isoenzyme composition in the two mouse strains was different after clofibrate pretreatment, as reflected in reduced levels of some warfarin metabolites and a reduced total metabolism of warfarin, consistent with the narrow substrate specificity of clofibrate-induced cytochrome P450IVA1 for fatty acid hydroxylation. Accordingly, it is clear that both the basal and xenobiotic inducible hepatic cytochrome P-450 isoenzymes in warfarin-resistant and susceptible mice are different and therefore have implications for the in vivo disposition of warfarin.  相似文献   

9.
7-Azido-4-methylcoumarin (AzMC) is a fluorescent photoactive compound structurally related to 4-methylumbelliferone (4-MU), a marker substrate of the human liver recombinant UDP-glucuronosyltransferase (UGT) 1A6. AzMC was synthesized and utilized to label the substrate binding site of UGT1A6. AzMC exhibits a fluorescence spectrum with maximum excitation and emission wavelengths of 380 and 442 nm, respectively. Upon irradiation, the probe irreversibly inhibited glucuronidation activity measured with para-nitrophenol (pNP) as substrate and interacted with UGT1A6 according to a saturable process indicative of reversible binding before covalent incorporation of the photoaffinity label. This inhibition was both time and concentration dependent and led to the calculation of an inhibition constant, k(2) = 0.113 mM min(-1), and dissociation constant, K(d) = 2.89 mM, for the reaction. Partial photoinactivation of UGT1A6 with AzMC revealed that the probe decreased the apparent V(max) of the pNP glucuronidation reaction, but not the K(m). Moreover, inhibition was partially prevented by 1-naphthol, a surrogate substrate for the enzyme, or by preincubation with an active-site directed inhibitor, 5'-O-[[(2-decanoylamino-3-phenyl-propyloxycarbonyl)amino]-su lfonyl]-2 ',3'-O-isopropylideneuridine. In contrast, UDP-glucuronic acid (UDP-GlcUA) did not have any protective effect against photoinactivation and AzMC did not affect the photoaffinity labeling of UGT1A6 by 5-[beta-(32)P]N(3)UDP-GlcUA, a photoaffinity analog of UDP-GlcUA. Additionally, in the absence of irradiation, AzMC was found to be a competitive inhibitor of 4MU glucuronidation. Collectively, these results strongly indicate that AzMC specifically binds to the UGT1A6 aglycon binding site. Amino acid alignment of phenol-binding proteins revealed a conserved motif, YXXXKXXPXP. It is possible that this motif is involved in phenol binding to UGT1A6 and other phenol-accepting proteins.  相似文献   

10.
Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-??6-hydroxy-71-?(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo?3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]?1benzopyran-7-one (GF-I-1) and 4-??6-hydroxy-7??4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo?3, 2-g1benzopyran-4-yl)-4-hexenyl?xy-3, 7-dimethyl-2-octenyl?xy-7H-furo?3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19 (K(i) = 0.8 and 0.5 microM, respectively).  相似文献   

11.
3'-[(4-Azidosalicyl)glycyl]-2',5'-dideoxyadenosine (1), 3'- [(4-azidosalicyl)-gamma-aminobutyryl]-2',5'-dideoxyadenosine (2), and the (125)I-labeled mono- and diiodinated analogs of 1 were synthesized and tested as photoaffinity probes for adenylyl cyclases. Kinetics for inhibition of purified type I enzyme by 1 was noncompetitive with respect to Mn(*)5'-ATP in the absence of light, implying a P-site mechanism of inhibition. In a UV-dependent manner both 1 and 2 and the iodinated derivative of 1 irreversibly inactivated membrane-bound and purified forms of recombinant type I bovine adenylyl cyclase expressed in ovarian cells of either the fall armyworm (Sf9) or Trichoplasia ni (High Five). Irreversible inactivation was independent of 5'-ATP and was prevented by 2', 5'-dideoxyadenosine. Adenylyl cyclase, whether purified from bovine brain or in membranes from High Five cells expressing type I enzyme, when subjected to UV irradiation in the presence of (125)I-labeled 1 resulted in radioactive incorporation into protein migrating at approximately 116 kDa. The cross-linking of 1 and its iodinated derivative with adenylyl cyclase suggests potential for such compounds to be useful in structural studies of adenylyl cyclases or of other proteins for which adenine nucleosides are substrates or allosteric regulators.  相似文献   

12.
In this paper we describe the synthesis and photochemical and biochemical properties of two new photoaffinity probes designed for studies on the structure-function relationship of the sodium D-glucose cotransporter (SGLT1). The two probes are [2(')-iodo-4(')-(3(")-trifluoromethyldiazirinyl)phenoxy]-D-glucopyranoside (TIPDG), a mimic for the phenyl glucopyranoside arbutin which is transported by SGLT1 with a very high affinity, and [(4(')-benzoyl)phenoxy]-D-glucopyranoside (BzG), a model compound for phlorizin, the most potent competitive inhibitor of sugar translocation by SGLT1. Both photoaffinity probes TIPDG (lambda(max)=358 nm) and BzG (lambda(max)=293 nm) can be activated at 350-360 nm, avoiding protein-damaging wavelengths. In inhibitor studies on sodium-dependent D-glucose uptake into rabbit intestinal brush border membrane vesicles TIPDG and BzG showed a fully competitive inhibition with regard to the sugar with respective K(i) values of 22+/-5 microM for TIPDG and 12+/-2 microM for BzG. These K(i) values are comparable to those of their parent compounds arbutin (25+/-6 microM) and phlorizin (8+/-1 microM). To further test the potential of TIPDG and BzG as photoaffinity probes, truncated loop 13 protein, supposed to be part of the substrate recognition site of SGLT1, was exposed to TIPDG and BzG in solution. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis demonstrated that TIPDG and BzG successfully labeled the protein. These preliminary results suggest that both photoaffinity probes are promising tools for the study of the structure-function relationship of SGLT1 and other SGLT1 family transporter proteins.  相似文献   

13.
CYP4F1 was discovered by Chen and Hardwick (Arch. Biochem. Biophys. 300, 18-23, 1993) as a new CYP4 cytochrome P450 (P450) preferentially expressed in rat hepatomas. However, the catalytic function of this P450 remained poorly defined. We have purified recombinant CYP4F1 protein to a specific content of 12 nmol of P450/mg of protein from transfected yeast cells by chromatography of solubilized microsomes on an amino-n-hexyl Sepharose 4B column, followed by sequential HPLC on a DEAE column and two hydroxylapatite columns. The purified P450 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 53 kDa. The enzyme catalyzed the omega-hydroxylation of leukotriene B(4) with a K(m) of 134 microM and a V(max) of 6.5 nmol/min/nmol of P450 in the presence of rabbit hepatic NADPH-P450 reductase and cytochrome b(5). In addition, 6-trans-LTB(4), lipoxin A(4), prostaglandin A(1), and several hydroxyeicosatetraenoic acids (HETEs) were also omega-hydroxylated. Of several eicosanoids examined, 8-HETE was the most efficient substrate, with a K(m) of 18.6 microM and a V(max) of 15.8 nmol/min/nmol of P450. In contrast, no activity was detected toward lipoxin B(4), laurate, palmitate, arachidonate, and benzphetamine. The results suggest that CYP4F1 participates in the hepatic inactivation of several bioactive eicosanoids.  相似文献   

14.
Maltooligosaccharides with two to six (alpha 1-4)-linked glucose residues, carrying at their reducing end a 3-azi-1-methoxybutyl group in either alpha or in beta glycosidic linkage, were synthesized. These maltooligosaccharide analogues inhibit maltose uptake via the maltose-binding-protein-dependent transport system in Escherichia coli. The concentration of half-maximal inhibition of maltose transport, at 15 nM concentration, decreases with increasing chain length of the analogue, levelling off at 40 microM after a chain length of four glucose residues in the alpha series and at 350 microM after a chain length of three glucose residues in the beta series. The inhibition of maltose transport occurs at the level of the periplasmic maltose-binding protein. 3-Azi-1-methoxybutyl alpha-D-[3H]maltotrioside was bound by the maltose-binding protein with a Kd of 0.18 mM. Irradiation at 350 nm of purified maltose-binding protein in the presence of 4 microM of this substrate labeled the protein covalently; labeling was prevented by 1 mM maltose. Using a crude preparation of periplasmic proteins two proteins were labeled, the maltose-binding protein and alpha-amylase. Thus, 3-azi-1-methoxybutyl alpha-D-maltooligosaccharides are potent photoaffinity labels for proteins with maltooligosaccharides-binding sites.  相似文献   

15.
Potential probes of protein cholesterol and fatty acid binding sites, namely, 12-[(5-iodo-4-azido-2-hydroxybenzoyl)amino]dodecanoate (IFA) and its coenzyme A (IFA:CoA) and cholesteryl (IFA:CEA) esters, were synthesized. These radioactive, photoreactive lipid analogues were recognized as substrates and inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) and cholesterol esterase, neutral lipid binding enzymes which are key elements in the regulation of cellular cholesterol metabolism. In the dark, IFA reversibly inhibited cholesteryl [14C]oleate hydrolysis by purified bovine pancreatic cholesterol esterase with an apparent Ki of 150 microM. Cholesterol esterase inhibition by IFA became irreversible after photolysis with UV light and oleic acid (1 mM) provided 50% protection against inactivation. Incubation of homogeneous bovine pancreatic cholesterol esterase with IFA:CEA resulted in its hydrolysis to IFA and cholesterol, indicating recognition of IFA:CEA as a substrate by cholesterol esterase. The coenzyme A ester, IFA:CoA, was a reversible inhibitor of microsomal ACAT activity under dark conditions (apparent Ki = 20 microM), and photolysis resulted in irreversible inhibition of enzyme activity with 87% efficiency. IFA:CoA was also recognized as a substrate by both liver and aortic microsomal ACATs, with resultant synthesis of 125IFA:CEA. IFA and its derivatives, IFA:CEA and IFA:CoA, are thus inhibitors and substrates for cholesterol esterase and ACAT. Biological recognition of these photoaffinity lipid analogues will facilitate the identification and structural analysis of hitherto uncharacterized protein lipid binding sites.  相似文献   

16.
17.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

18.
A simple and practical procedure for the synthesis of P1,P4-di(adenosine 5'-) tetraphosphate from ATP by the catalysis of leucyl-tRNA synthetase from Bacillus stearothermophilus is described. Km for leucine was 6.7 microM and for ATP was 3.3 mM. The reaction yielded not only diadenosine tetraphosphate, but various byproducts such as P1,P3-(diadenosine 5'-) triphosphate, ADP and AMP. By coupling the reaction with an ATP regeneration system by acetate kinase and adenylate kinase with acetylphosphate as a phosphate donor, diadenosine tetraphosphate was prepared as a sole product at a high yield (96%).  相似文献   

19.
A photoaffinity analogue of dATP, 8-azido-2'-deoxyadenosine 5'-triphosphate (8-azido-dATP), was used to probe the nucleotide binding site of the non-template-directed DNA polymerase terminal deoxynucleotidyl transferase (EC 2.7.7.31). The Mg2+ form of 8-azido-dATP was shown to be an efficient enzyme substrate with a Km of 53 microM. Loss of enzyme activity occurred during UV photolysis only in the presence of 8-azido-dATP. At saturation (120 microM 8-azido-dATP), 54% of the protein molecules were modified as determined by inhibition of enzyme activity. Kinetic analysis of enzyme inhibition induced by photoincorporation of 8-azido-dATP indicated an apparent Kd of approximately 38 microM. Addition of 2 mM dATP to 120 microM 8-azido-dATP resulted in greater than 90% protection from photoinduced loss of enzyme activity. In contrast, no protection was observed with the addition of 2 mM dAMP. Enzyme inactivation was directly correlated with incorporation of radiolabeled 8-azido-dATP into the protein and UV-induced destruction of the azido group. Photoincorporation of 8-azido-dATP into terminal transferase was reduced by all purine and pyrimidine deoxynucleoside triphosphates of which dGTP was the most effective. The alpha and beta polypeptides of calf terminal transferase were specifically photolabeled by [gamma-32P]-8-azido-dATP, and both polypeptides were equally protected by all four deoxynucleoside triphosphates. This suggests that the nucleotide binding domain involves components from both polypeptides.  相似文献   

20.
Chan WK  Delucchi AB 《Life sciences》2000,67(25):3103-3112
Resveratrol, a phytoalexin found in red wine, has been shown to possess antioxidant and antimutagenic properties. Incubation of resveratrol with Sf9 insect microsomes containing baculovirus-derived human cytochrome P450 3A4 (CYP3A4) and NADPH-cytochrome P450 reductase showed that resveratrol inactivated CYP3A4 in a time- and NADPH-dependent manner. Resveratrol, erythromycin and troleandomycin inactivated CYP3A4 at a similar rate (as reflected by k(inact)) whereas the binding affinity to CYP3A4 (as reflected by K(I)) was in the order of: troleandomycin > erythromycin > resveratrol. (K(I) and k(inact) for CYP3A4 inactivation by resveratrol, erythromycin and troleandomycin are 20 microM and 0.20 min(-1), 5.3 microM and 0.12 min(-1) and 0.18 microM and 0.15 min(-1), respectively.) Fractionation studies of red wine showed that fractions that did not contain resveratrol inactivated CYP3A4 significantly. In addition, the resveratrol content in red wine used in the study was too low to account for the degree of CYP3A4 inactivation observed after red wine treatment. Inactivation studies using a variety of red wine types showed that the CYP3A4 inactivation did not correlate to their resveratrol content. In summary, data here showed that resveratrol is an effective mechanism-based inactivator of CYP3A4; however, it is not one of the main red wine constituents that are responsible for CYP3A4 inactivation by red wine. Nevertheless, inactivation of CYP3A4 by resveratrol may cause clinically relevant drug interactions with CYP3A4 substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号