首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mental retardation is a frequent cause of intellectual and physical impairment. Several genes associated with mental retardation have been mapped to the X chromosome, among them, there is FMR1. The absence of or mutation in the Fragile Mental Retardation Protein, FMRP, is responsible for the Fragile X syndrome. FMRP is an RNA binding protein that shuttles between the nucleus and the cytoplasm. FMRP binds to several mRNAs including its own mRNA at a sequence region containing a G quartet structure. Some of the candidate downstream genes recently identified encode for synaptic proteins. Neuronal studies indicate that FMRP is located at synapses and loss of FMRP affects synaptic plasticity. At the synapses, FMRP acts as a translational repressor and in particular regulates translation of specific dendritic mRNAs, some of which encode cytoskeletal proteins and signal transduction molecules. This action occurs via a ribonucleoprotein complex that includes a small dendritic non-coding neuronal RNA that determines the specificity of FMRP function via a novel mechanism of translational repression. Since local protein synthesis is required for synaptic development and function, this role of FMRP likely underlies some of the behavioural and developmental symptoms of FRAXA patients. Finally we review recent work on the Drosophila system that connects cytoskeleton remodelling and FMRP function.  相似文献   

2.
mRNPs, polysomes or granules: FMRP in neuronal protein synthesis   总被引:4,自引:0,他引:4  
mRNA localization and regulated translation play central roles in neurite outgrowth and synaptic plasticity. A key molecule in these processes is the Fragile X mental retardation protein, FMRP, which is involved in the metabolism of neuronal mRNAs. Absence or mutation of FMRP leads to spine dysmorphogenesis and impairs synaptic plasticity. Studies that have mainly been performed on the mouse and Drosophila models for Fragile X Syndrome showed that FMRP is involved in translational regulation at synapses, but even 15 years after discovery of the FMR1 gene, the precise working mechanisms remain elusive.  相似文献   

3.
Fragile X mental retardation protein (FMRP), the protein responsible for the fragile X syndrome, is an RNA-binding protein involved in localization and translation of neuronal mRNAs. One of the RNAs known to interact with FMRP is the dendritic non-translatable brain cytoplasmic RNA 1 BC1 RNA that works as an adaptor molecule linking FMRP and some of its regulated mRNAs. Here, we showed that the N terminus of FMRP binds strongly and specifically to BC1 and to its potential human analog BC200. This region does not contain a motif known to specifically recognize RNA and thus constitutes a new RNA-binding motif. We further demonstrated that FMRP recognition involves the 5' stem loop of BC1 and that this is the region that exhibits complementarity to FMRP target mRNAs, raising the possibility that FMRP plays a direct role in BC1/mRNA annealing.  相似文献   

4.
The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2'-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2'-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP-BC1-mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP-BC1 complex at synapses.  相似文献   

5.
Bassell GJ  Warren ST 《Neuron》2008,60(2):201-214
Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.  相似文献   

6.
Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.  相似文献   

7.
Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the absence of FMRP (Fragile X Mental Retardation Protein). FMRP is an RNA binding protein reported to be involved in translational control, notably at postsynaptic sites of protein synthesis as a part of a multiprotein/mRNA complex. One of the FMRP interactors, NUFIP1, is an RNA binding protein with an expression profile matching that of FMRP. We now show that in the nucleus NUFIP1 is localized in the nuclear matrix in RNA-containing structures lying in the proximity of, but not overlapping with, sites of nascent RNA. NUFIP1 is also present in the cytoplasm, where it is associated with ribosomes, similarly to FMRP. In neurons NUFIP1 can be detected in functional synaptoneurosomes, colocalizing with ribosomes. Consistent with its subcellular localization in both nucleus and cytoplasm, we show that NUFIP1 contains a functional CRM1-dependent nuclear export signal and is able to shuttle between these two cellular compartments. These findings suggest the involvement of NUFIP1 in the export and localization of mRNA and, in association with FMRP, in the regulation of local protein synthesis near synapses.  相似文献   

8.
Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface   总被引:13,自引:0,他引:13  
Antar LN  Bassell GJ 《Neuron》2003,37(4):555-558
Recent studies provide new insight into the mechanistic function of Fragile X Mental Retardation Protein (FMRP), paving the way to understanding the biological basis of Fragile X Syndrome. While it has been known for several years that there are spine defects associated with the absence of the mRNA binding protein FMRP, it has been unclear how its absence may lead to specific synaptic defects that underlie the learning and cognitive impairments in Fragile X. One hypothesis under study is that FMRP may play a key role in the regulation of dendritically localized mRNAs, at subsynaptic sites where regulation of local protein synthesis may influence synaptic structure and plasticity. This review highlights recent progress to identify the specific mRNA targets of FMRP and assess defects in mRNA regulation that occur in cells lacking FMRP. In addition, exciting new studies on Fmr1 knockout mice and mutant flies have begun to elucidate a key role for FMRP in synaptic growth, structure, and long-term plasticity.  相似文献   

9.
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.  相似文献   

10.
11.
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is caused by the loss of function for Fragile X Mental Retardation Protein (FMRP), a selective RNA-binding protein with a demonstrated role in the localized translation of target mRNAs at synapses. Several recent studies provide compelling evidence for a new role of FMRP in the development of the nervous system, during neurogenesis. Using a multi-faceted approach and a variety of model systems ranging from cultured neurospheres and progenitor cells to in vivo Drosophila and mouse models these reports indicate that FMRP is required for neural stem and progenitor cell proliferation, differentiation, survival, as well as regulation of gene expression. Here we compare and contrast these recent reports and discuss the implications of FMRP's new role in embryonic and adult neurogenesis, including the development of novel therapeutic approaches to FXS and related neurological disorders such as autism.  相似文献   

12.
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the “kissing complex,” which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.  相似文献   

13.
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regulation remain elusive. Using immunoprecipitation approaches with monoclonal Ab7G1-1 and a new generation of chicken antibodies, we identified Caprin1 as a novel FMRP-cellular partner. In vivo and in vitro evidence show that Caprin1 interacts with FMRP at the level of the translation machinery as well as in trafficking neuronal granules. As an RNA-binding protein, Caprin1 has in common with FMRP at least two RNA targets that have been identified as CaMKIIα and Map1b mRNAs. In view of the new concept that FMRP species bind to RNA regardless of known structural motifs, we propose that protein interactors might modulate FMRP functions.  相似文献   

14.
The mental retardation protein FMRP is involved in the transport of mRNAs and their translation at synapses. Patients with fragile X syndrome, in whom FMRP is absent or mutated, show deficits in learning and memory that might reflect impairments in the translational regulation of a subset of neuronal mRNAs. The study of FMRP provides important insights into the regulation and functions of local protein synthesis in the neuronal periphery, and increases our understanding of how these functions can produce specific effects at individual synapses.  相似文献   

15.
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.  相似文献   

16.
Fragile X syndrome is caused by the absence of the fragile X mental-retardation protein (FMRP), an mRNA-binding protein, which may play important roles in the regulation of dendritic mRNA localization and/or synaptic protein synthesis. We have recently applied high-resolution fluorescence imaging methods to document the presence, motility and activity-dependent regulation of FMRP granule trafficking in dendrites and spines of cultured hippocampal neurons. In this study, we show that FMRP granules distribute to F-actin-rich compartments, including filopodia, spines and growth cones during the staged development of hippocampal neurons in culture. Fragile X mental-retardation protein granules were shown to colocalize with ribosomes, ribosomal RNA and MAP1B mRNA, a known FMRP target, which encodes a protein important for microtubule and actin stabilization. The levels of FMRP within dendrites were reduced by disruption of microtubule dynamics, but not by disruption of F-actin. Direct measurements of FMRP transport kinetics using fluorescence recovery after photobleaching in living neurons showed that microtubules were required to induce the mGluR-dependent translocation into dendrites. This study provides further characterization of the composition and regulated trafficking of FMRP granules in dendrites of hippocampal neurons.  相似文献   

17.
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5′-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.  相似文献   

18.
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.  相似文献   

19.
20.
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear. We have previously demonstrated that Drosophila FMRP (dFMRP) is required in early embryos for cleavage furrow formation. In an effort to identify new targets of dFMRP-dependent regulation and new effectors of cleavage furrow formation, we used two-dimensional difference gel electrophoresis and mass spectrometry to identify proteins that are misexpressed in dfmr1 mutant embryos. Of the 28 proteins identified, we have identified three subunits of the Chaperonin containing TCP-1 (CCT) complex as new direct targets of dFMRP-dependent regulation. Furthermore, we found that the septin Peanut, a known effector of cleavage, is a likely conserved substrate of fly CCT and is mislocalized in both cct and in dfmr1 mutant embryos. Based on these results we propose that dFMRP-dependent regulation of CCT subunits is required for cleavage furrow formation and that at least one of its substrates is affected in dfmr1 embryos suggesting that dFMRP-dependent regulation of CCT contributes to the cleavage furrow formation phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号