首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 3- to 5-month-old male Sprague-Dawley rats infected with the hepatic metacestode, Taenia taeniaeformis, the serum testosterone level was significantly lower than in comparable uninfected controls. By transmission electron microscopy, testicular Leydig cells of infected rats had less smooth endoplasmic reticulum than control Leydig cells. Cultured metacestodes isolated from the hepatic cysts secreted or excreted substances into the incubation medium. The effect of the excretory-secretory product on testosterone concentration in the sera and testes of 15-day-old rats was examined. Subcutaneous injection of 50-200 micrograms of excretory-secretory product/0.1 ml saline/rat for 2 days significantly reduced human chorionic gonadotropin-stimulated serum and testicular testosterone concentrations. Furthermore, the effect of the excretory-secretory product on isolated rat Leydig cell testosterone production was examined. Rat Leydig cells produced testosterone in vitro and, in the presence of 50 IU human chorionic gonadotropin/ml incubation medium, they responded with approximately 100% increase in testosterone production. Addition of 2-10 micrograms excretory-secretory product protein/ml of culture medium significantly reduced the testosterone production by rat Leydig cells in vitro. These results indicate that excretory-secretory product of cultured T. taeniaeformis metacestodes has a direct inhibitory effect on Leydig cell testosterone production under stimulation with human chorionic gonadotropin.  相似文献   

2.
We examined age-related changes in the expression of transforming growth factor-β(1) (TGF-β(1)) and transforming growth factor-β(2) in mouse testes. The mice were assigned to three age groups: 35, 50, and 75 days old. Paraffin embedded testis sections were processed for the standard streptavidin biotin peroxidase complex immunohistochemistry method. TGF-β(1) expression increased in aging round spermatids over the time studied. There was no expression in 35-day-old Leydig cells, whereas strong expression of TGF-β(1) was observed in 50-day-old Leydig cells. Expression decreased in 75-day-old Leydig cells. TGF-β(2) expression was weak in 35- and 50-day-old mouse spermatids, but expression was greater in 75-day-old elongated spermatids. In Leydig cells, TGF-β(2) expression was strong in both 35- and 50-day-old mice, whereas the expression of TGF-β(2) was less in 75-day-old Leydig cells. Our results suggest that TGF-β(1) and TGF-β(2) may play significant roles in testicular functions and germ cell development in mice.  相似文献   

3.
Germ cells and Sertoli and Leydig cell functions were studied from 7 to 180 days after an acute exposure of 2-month-old rat testes to 9 Gy of gamma rays. Body weight, testis and epididymal weights were recorded. Sertoli cell parameters (androgen-binding protein, ABP, in caput epididymis and plasma follicle stimulating hormone, FSH) and Leydig cell parameters (plasma luteinizing hormone, LH, testosterone and prostate and seminal vesicle weights) were determined together with the number of germ cells and Sertoli cells. Irradiation did not affect body weight but significantly reduced testicular and epididymal weights from day 7 and day 15 post-irradiation respectively. The cells killed by irradiation were mainly spermatogonia and preleptotene spermatocytes engaged in replicating their DNA at the time of exposure, but all spermatocytes seemed damaged as they gave abnormal descendent cells. By day 34, only elongated spermatids remained in a few tubules and thereafter very little regeneration of the seminiferous epithelium occurred, except for one rat which showed a better regeneration. Levels of ABP decreased by day 15 when the germ cell depletion had reached the pachytene spermatocytes, whereas FSH and LH levels rose when the number of elongated spermatids decreased. Levels of testosterone and the weight of the seminal vesicles did not change; occasionally, the prostate weight was slightly reduced. These results support our hypothesis that pachytene spermatocytes and elongated spermatids are involved in influencing some aspects of Sertoli cell function in the adult rat.  相似文献   

4.
In the present study, we describe a novel mouse model for inducible germ cell ablation. The mice express herpes simplex virus thymidine kinase (HSV-TK) under the inhibin-alpha subunit promoter (Inhalpha). When adult transgenic (TG) mice were treated with famciclovir (FCV) for 4 wk, their spermatogenesis was totally abolished, with only Sertoli cells and few spermatids remaining in the seminiferous tubules. However, testicular steroidogenesis was not affected. Shorter treatment periods allowed us to follow up the progression of germ cell death: After 3 days, spermatogonia and preleptotene spermatocytes were no longer present. After a 1-wk treatment, spermatogonia, preleptotene, and zygotene spermatocytes were missing and the amount of pachytene spermatocytes was decreased. After a 2-wk treatment, round and elongating spermatids were present. During the third week, round spermatids were lost and, finally, after a 4-wk treatment, only Sertoli cells and few spermatids were present. Interestingly, the transgene is detected in Leydig and Sertoli cells but not in spermatogonia. This suggests that FCV is phosphorylated in Sertoli cells, and thereafter, leaks to neighboring spermatogonia, apparently through cell-cell junctions present, enabling trafficking of phosphorylated FCV. Because of the many mitotic divisions they pass through, the spermatogonia are very sensitive to toxins interfering with DNA replication, while nondividing Sertoli cells are protected. Using transillumination-assisted microdissection of the seminiferous tubules, the gene-expression patterns analyzed corresponded closely to the histologically observed progression of cell death. Thus, the model offers a new tool for studies on germ cell-Sertoli cell interactions by accurate alteration of the germ cell composition in seminiferous tubules.  相似文献   

5.
6.
Flow cytometric and histological analysis, measurements of testicular weight and sperm head counts were performed to analyze the effects of doxorubicin (DX) and 4'-epi-doxorubicin (4'-epi-DX), two closely related antineoplastic agents, on mouse spermatogenesis. The DNA distribution patterns obtained by flow cytometry indicate the frequency of different germ cell types: elongated and round spermatids, primary spermatocytes with a 4 c DNA content, and S-phase spermatogonia and spermatocytes. Following the injection of different doses of DX, characteristic changes of the frequencies of those germ cell types are observed with time, indicating selective inactivation of spermatogonia followed by sequential depletion of spermatocytes, round spermatids and elongated spermatids, and then recovery of these cell types. Similar changes were observed with 4'-epi-DX; the dose-response curves indicated that 4'-epi-DX might be slightly, although not significantly, less effective than DX. The mutagenic potential of DX and 4'-epi-DX is reflected by an increase of the coefficient of variation in the DNA histogram as a measure of aneuploidy, and an increase of diploid spermatids. Flow cytometric analysis of spermatogenesis offers a sensitive in vivo system to monitor mutagenic agents.  相似文献   

7.
We examined age-related changes in the expression of transforming growth factor-β1 (TGF-β1) and transforming growth factor-β2 in mouse testes. The mice were assigned to three age groups: 35, 50, and 75 days old. Paraffin embedded testis sections were processed for the standard streptavidin biotin peroxidase complex immunohistochemistry method. TGF-β1 expression increased in aging round spermatids over the time studied. There was no expression in 35-day-old Leydig cells, whereas strong expression of TGF-β1 was observed in 50-day-old Leydig cells. Expression decreased in 75-day-old Leydig cells. TGF-β2 expression was weak in 35- and 50-day-old mouse spermatids, but expression was greater in 75-day-old elongated spermatids. In Leydig cells, TGF-β2 expression was strong in both 35- and 50-day-old mice, whereas the expression of TGF-β2 was less in 75-day-old Leydig cells. Our results suggest that TGF-β1 and TGF-β2 may play significant roles in testicular functions and germ cell development in mice.  相似文献   

8.
DNA flow cytometry was evaluated as a tool to analyze stage-specific changes that occur in absolute cell numbers in the testes. Hypophysectomy was selected as a model system for perturbing testicular cell types, since the cytological sequelae of this treatment post-hypophysectomy in the rat are well documented in the literature. Rat spermatogenic cells in stages II-V, VII, and IX-XIII of the seminiferous epithelial cycle (as defined by Leblond and Clermont, 1952) were quantified in numbers per standard length of seminiferous tubule by DNA flow cytometry after hypophysectomy and subsequent gonadotropin treatment. In agreement with previous histological studies, we found that acrosome- and maturation-phase spermatids disappeared from the seminiferous epithelium after 17 days post-hypophysectomy, whereas meiosis and early spermiogenesis continued at least 164 days. The number of meiotic cells and round spermatids gradually decreased after hypophysectomy. Changes were observed as early as Day 6 post-hypophysectomy. Treatment with human chorionic gonadotropin (hCG) alone maintained most cell numbers within normal limits, and follicle-stimulating hormone (FSH) was needed in addition to hCG to maintain the normal number of cells with the amount of DNA contained in primary spermatocytes and spermatogonia in G2/M-phase (4C) in stages IX-XIII and elongated spermatids (1C') in stages II-V of the epithelial cycle. The absolute numbers of spermatogenic cells at different phases of maturation provide a useful reference for quantitative studies of spermatogenesis. Pathological changes in the seminiferous epithelium can be detected and quantified by DNA flow cytometry.  相似文献   

9.
This study was designed to evaluate the effect of adrenalectomy on growth of L1210 leukemic cells in ascites of BDF1 mice. Varying doses of 1.5 x 10(4), 5.0 x 10(5), and 1.5 x 10(6) viable tumour cells were inoculated intraperitoneally into groups of either adrenalectomized or sham-operated mice. At days 4 to 7 after the inoculation, adrenalectomized mice inoculated with 1.5 x 10(4) or 5.0 x 10(5) tumour cells had a smaller number of tumour cells in ascites than sham-operated controls. However, after inoculation of 1.5 x 10(6) cells, no significant differences were found at days 2 to 4 between adrenalectomized and sham-operated mice. The growth retardation by adrenalectomy was not observed in adrenalectomized mice supplemented with 4 or 6 micrograms dexamethasone per day per mouse. It suggested that the ablation of glucocorticoids was at least partially responsible for the growth retardation observed in adrenalectomized mice. Cell kinetic analysis revealed that the difference in a potential doubling time could not explain these results. Tumour retention in the peritoneal cavity was measured using [125I]-iododeoxyuridine-labelled tumour cells as a tracer. At days 4 to 6 after inoculation of 5.0 x 10(5) labelled cells, radioactivity in the peritoneal cavity in adrenalectomized mice was about 70 per cent of that in sham-operated mice. This ratio was almost equivalent to the ratio of the number of cells in ascites of adrenalectomized mice to that of sham-operated ones. Consequently, growth retardation observed in adrenalectomized mice resulted from an increase in tumour cell migration and/or in tumour cell death, but not from an increase in doubling time.  相似文献   

10.
The LH receptor knockout model, developed in our laboratory, was used in determining what FSH alone can do in the absence of LH signaling and whether any of the testicular LH actions are not mediated by androgens. The results revealed that null animals contained smaller seminiferous tubules, which contained the same number of Sertoli cells, spermatogonia, and early spermatocytes as wild-type siblings. The number of late spermatocytes, on the other hand, was moderately decreased, the number of round spermatids was dramatically decreased, and elongated spermatids were completely absent. These changes appear to be due to an increase in apoptosis in spermatocytes. While the number of Leydig cells progressively increased from birth to 60 days of age in wild-type animals, they remained unchanged in null animals. Consequently, 60-day-old null animals contained only a few Leydig cells of fetal type. The age-dependent increase in testicular macrophages lagged behind in null animals compared with wild-type siblings. Orchidopexy indicated that -/- testicular phenotype was not due to abdominal location. Rather, it was mostly due to androgen deficiency, as 21-day testosterone replacement therapy stimulated the growth of seminiferous tubules, decreased apoptosis, and increased the number of late spermatocytes and round spermatids and their subsequent differentiation into mature sperm. The therapy, however, failed to restore adult-type Leydig cells and testicular macrophage numbers to the wild-type levels. In summary, our data support the concept that FSH signaling alone can maintain the proliferation and development of Sertoli cells, spermatogonia, and early spermatocytes. LH actions mediated by testosterone are required for completion of spermatogenesis, and finally, androgen-independent actions of LH are required for the formation of adult-type Leydig cells and recruitment of macrophages into the testes.  相似文献   

11.
Flow cytometry (FCM) was performed to monitor the cellular effects of extremely-low-frequency magnetic field on mouse spermatogenesis. Groups of five male hybrid F1 mice aged 8–10 weeks were exposed to 50 Hz magnetic field. The strength of the magnetic field was 1.7 mT. Exposure times of 2 and 4 h were chosen. FCM measurements were performed 7, 14, 21, 28, 35, and 42 days after treatment. For each experimental point, a sham-treated group was used as a control. The possible effects were studied by analyzing the DNA content distribution of the different cell types involved in spermatogenesis and using the elongated spermatids as the reference population. The relative frequencies of the various testicular cell types were calculated using specific software. In groups exposed for 2 h, no effects were observed. In groups exposed for 4 h, a statistically significant (P < 0.001) decrease in elongated spermatids was observed at 28 days after treatment. This change suggests a possible cytotoxic and/or cytostatic effect on differentiating spermatogonia. However, further studies are being carried out to investigate the effects of longer exposure times. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The relative biological effectiveness of 14 MeV neutrons in the low-dose range < or =1 Gy has been determined in differentiating and differentiated spermatogonia. Male NMRI mice were exposed to single doses of 2 cGy to 3 Gy of (60)Co gamma rays or neutrons. The ratios of testicular S-phase cells, 4c primary spermatocytes, and elongated spermatids were quantified by DNA flow cytometry 2 to 70 days after irradiation and were found to decrease. Histological samples and testis weight were analyzed in parallel. Doses of 2-5 cGy neutrons and 10-50 cGy gamma rays significantly (P<0.05) decreased the proportions of S-phase cells, spermatocytes and elongated spermatids at 4, 14 and 28 days postirradiation. For S-phase cells, the biphasic shape of the cell survival curves was described with a D(50) of 5 cGy neutrons. The D(50) for (60)Co gamma rays and the relative biological effectiveness could not be determined. The relative biological effectiveness of neutrons at 50% reductions of testis weight, primary spermatocytes, and elongated spermatids were 2.5, 10.0 and 6.1, respectively. This in vivo assay is interesting because of its sensitivity at dose ranges that are relevant for exposures in the environment, the workplace and radiotherapy.  相似文献   

13.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

14.
15.
In the cultivated male Japanese eel, spermatogonia are the only germ cells present in the testis. Using a newly developed organ culture system, we obtained evidence that human chorionic gonadotropin (HCG) can induce the entire process of spermatogenesis, in vitro, from spermatogonia to spermatozoa within 24 days. The HCG-induced spermatogenesis in vitro was accompanied by a marked activation of Sertoli cells and Leydig cells, occurring prior to the beginning of spermatogonial proliferation. These results indicate that gonadotropin triggers spermatogenesis in the Japanese eel and further suggest that this effect of gonadotropin is mediated through the actions of testicular somatic cells.  相似文献   

16.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

17.
The viviparous lizards of the Sceloporus genus exhibit both seasonal and continuous spermatogenesis. The viviparous lizard Sceloporus mucronatus from Tecocomulco, Hidalgo, México, exhibits seasonal spermatogenesis. This study demonstrates the relationship between changes in testis volume, spermatogenesis activity, and Leydig cells during the male reproductive cycle of S. mucronatus. A recrudescence period is evident, which starts in the winter when testicular volume is reduced and climaxes in February, when the greatest mitotic activity of spermatogonia occurs. The testicular volume and Leydig cell index increase gradually during the spring with primary spermatocytes being the most abundant cell type observed within the germinal epithelium. In the summer, the secondary spermatocytes and undifferentiated round spermatids are the most abundant germinal cells. The breeding season coincides with spermiogenesis and spermiation; testicular volume also increases significantly as does the Leydig cell index where these cells increase in both cytoplasmic and nuclear volume. During fall, testicular regression begins with a significant decrease in testicular volume and germinal epithelium height, although there are remnant spermatozoa left within the lumen of the seminiferous tubules. During this time, the Leydig cell index is also reduced, and there is a decrease in cellular and nuclear volumes within these interstitial cells. Finally, during quiescence in late fall, there is reduced testicular volume smaller than during regression, and only spermatogonia and Sertoli cells are present within the seminiferous tubules. Leydig cells exhibit a low index number, their cellular and nuclear volumes are reduced, and there is a depletion in lipid inclusion cytoplasmically.  相似文献   

18.
Grafting of immature testicular tissue provides a tool to examine testicular development and may offer a perspective for preservation of fertility in prepubertal patients. Successful xenografting in mice, resulting in mature spermatids, has been performed in several species but has failed with testicular tissues from the common marmoset, Callithrix jacchus. Previous data indicate that the hormonal milieu provided by the mouse host might cause this failure. We conducted autologous ectopic transplantation of testicular fragments under the back skin in newborn marmoset monkeys. Seventeen months after transplantation, we found viable transplants in 2 out of the 4 grafted animals. In the transplants, tubules developed up to a state intermediate between the pregraft situation and adult controls. Dividing spermatogonia and primary spermatocytes were present. Boule-like positivity and CDC25A negativity indicated that spermatogenesis was arrested at early meiosis. Immunohistochemistry revealed normal maturation of Sertoli cells, Leydig cells, and peritubular cells. Serum testosterone values were not restored to the normal range and bioactive chorionic gonadotropin levels increased to castrate levels. Meiotic arrest could have occurred in the grafts because of lack of sufficient testosterone or because of hyperthermia caused by the ectopic position of the grafts. We conclude that autologous transplants of immature testicular tissues in the marmoset can mature up to meiosis but that normal serum testosterone levels are not restored. Further studies have to be performed to overcome the meiotic arrest to explore the model further and to develop therapeutic options.  相似文献   

19.
The effect of prolactin (Prl) on gonadotropin secretion, testicular luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptors, and testosterone (T) production by isolated Leydig cells has been studied in 60-day-old rats treated for 4 days, 4 and 8 weeks with sulpiride (SLP), a dopaminergic antagonist, or for 4 days and 4 weeks with bromocriptine (CB), a dopaminergic agonist. Plasma Prl concentrations were significantly greater in the SLP groups (204 +/- 6 ng/ml) and lower in the CB groups (3.0 +/- 0.2 ng/ml) than those measured in the control groups (54 +/- 6 ng/ml). The plasma concentrations of gonadotropin were not affected by a 4-day treatment with SLP or CB, nor were they after a 4-week treatment with CB. However, the hyperprolactinemia induced by an 8-week treatment with SLP was associated with a reduced secretion of gonadotropin (LH, 16 +/- 4 vs. 35 +/- 6 ng/ml; FSH, 166 +/- 12 vs. 307 +/- 14 ng/ml). In SLP-induced hyperprolactinemia, a 30% increase in the density of the LH/hCG testicular binding sites was observed (178 +/- 12 fmol/mg protein), whereas a 60% decrease was measured in hypoprolactinemia (55 +/- 5 vs. control 133 +/- 5 fmol/mg protein). Plasma T levels were increased in 4-day and 4-week hyperprolactinemic animals (4.3 +/- 0.4 and 3.9 +/- 0.4 ng/ml, respectively), but returned to normal levels in the 8-week group (3.0 +/- 0.5 vs. C: 2.3 +/- 0.2 ng/ml). No T modifications were observed in hypoprolactinemic animals. Two distinct populations of Leydig cells (I and II) were obtained by centrifugation of dispersed testicular cells on a 0-45% continuous Metrizamide gradient. Both possess LH/hCG binding sites. However, the T production from Leydig cells of population II increased in the presence of hCG, whereas that of cell population I which also contain immature germinal cells did not respond. The basal and stimulated T secretions from cell populations I and II obtained from CB-treated animals were similar to controls, whereas from 4 days to 8 weeks of hyperprolactinemia, basal and hCG induced T productions from cell population II decreased progressively. These data show that hyperprolactinemia causes, in a time-dependent manner, a trophic effect on the density of LH/hCG testicular receptors; reduces basal and hCG-stimulated T production from isolated Leydig cells type II; and results in an elevated plasma T concentration which decreases with time. The latter suggests a slower T catabolism and/or an impaired peripheral conversion of T into 5 alpha-dihydrotestosterone (DHT). Although hypoprolactinemia is associated with a marked reduction in testicular LH receptors, it does not affect T production.  相似文献   

20.
With a view to elucidate seasonal variations in testicular spermatogenesis, quantitative analysis of spermatogenic cells was carried out in non-human primate species viz. rhesus (Macaca mulatta) and bonnet (M. radiata) monkeys during breeding (October-December) and non-breeding (May-June) seasons. The results revealed significant inhibition of testicular germ cell population during non-breeding compared with the breeding period in both the species. Quantitative determination of Sertoli cell-germ cell ratio showed a marked decrease in the number of type A-spermatogonia, spermatocytes (non-pachytene and pachytene) and spermatids (in steps 1-12 of spermiogenesis) in rhesus monkey during the non-breeding period. Bonnet monkeys exhibited the significant decline in the number of primary spermatocytes and spermatids during the non-breeding phase. In addition, average diameter of round seminiferous tubules and nuclear diameter of Leydig cells also decreased significantly in rhesus monkeys. However, bonnet monkeys did not show any significant change in nuclear diameter/morphology of Leydig cells, testicular tubular diameter and number of type A-spermatogoniae. Sertoli cell number did not show any significant change during both breeding and non-breeding periods in both the species. The results of this study indicate a prominent seasonal variation in testicular spermatogenic/Leydig cells in rhesus monkeys than those observed in bonnet monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号