首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testicular orphan nuclear receptor 4 (TR4) plays essential roles for normal spermatogenesis in male mice. However, its roles in female fertility and ovarian function remain largely unknown. Here we found female mice lacking TR4 (TR4-/-) displayed subfertility and irregular estrous cycles. TR4-/- female mice ovaries were smaller with fewer or no preovulatory follicles and corpora lutea. After superovulation, TR4-/- female mice produced fewer oocytes, preovulatory follicles, and corpora lutea. In addition, more intensive granulosa apoptosis was found in TR4-/- ovaries. Functional analyses suggest that subfertility in TR4-/- female mice can be due to an ovarian defect with impaired folliculogenesis rather than a deficiency in pituitary gonadotropins. Molecular mechanism dissection of defective folliculogenesis found TR4 might induce LH receptor (LHR) gene expression via direct binding to its 5' promoter. The consequence of reduced LHR expression in TR4-/- female mice might then result in reduced gonadal sex hormones via reduced expression of enzymes involved in steroidogenesis. Together, our results showed TR4 might play essential roles in normal folliculogenesis by influencing LHR signals. Modulation of TR4 expression and/or activation via its upstream signals or unidentified ligand(s) might allow us to develop small molecule(s) to control folliculogenesis.  相似文献   

2.
Early in vitro cell culture studies suggested that testicular orphan nuclear receptor 2 (TR2), a member of the nuclear receptor superfamily, may play important roles in the control of several pathways including retinoic acids, vitamin D, thyroid hormones, and ciliary neurotrophic factor. Here we report the surprising results showing that mice lacking TR2 are viable and have no serious developmental defects. Male mice lacking TR2 have functional testes, including normal sperm number and motility, and both male and female mice lacking TR2 are fertile. In heterozygous TR2(+/-) male mice we found that beta-galactosidase, the indicator of TR2 protein expression, was first detected at the age of 3 weeks and its expression pattern was restricted mainly in the spermatocytes and round spermatids. These protein expression patterns were further confirmed with Northern blot analysis of TR2 mRNA expression. Together, results from TR2-knockout mice suggest that TR2 may not play essential roles in spermatogenesis and normal testis development, function, and maintenance. Alternatively, the roles of TR2 may be redundant and could be played by other close members of the nuclear receptor superfamily such as testicular orphan receptor 4 (TR4) or unidentified orphan receptors that share many similar functions with TR2. Further studies with double knockouts of both orphan nuclear receptors, TR2 and TR4, may reveal their real physiological roles.  相似文献   

3.
The estrogen-related receptor alpha (ERRalpha) is an orphan member of the superfamily of nuclear hormone receptors expressed in tissues that preferentially metabolize fatty acids. Despite the molecular characterization of ERRalpha and identification of target genes, determination of its physiological function has been hampered by the lack of a natural ligand. To further understand the in vivo function of ERRalpha, we generated and analyzed Estrra-null (ERRalpha-/-) mutant mice. Here we show that ERRalpha-/- mice are viable, fertile and display no gross anatomical alterations, with the exception of reduced body weight and peripheral fat deposits. No significant changes in food consumption and energy expenditure or serum biochemistry parameters were observed in the mutant animals. However, the mutant animals are resistant to a high-fat diet-induced obesity. Importantly, DNA microarray analysis of gene expression in adipose tissue demonstrates altered regulation of several enzymes involved in lipid, eicosanoid, and steroid synthesis, suggesting that the loss of ERRalpha might interfere with other nuclear receptor signaling pathways. In addition, the microarray study shows alteration in the expression of genes regulating adipogenesis as well as energy metabolism. In agreement with these findings, metabolic studies showed reduced lipogenesis in adipose tissues. This study suggests that ERRalpha functions as a metabolic regulator and that the ERRalpha-/- mice provide a novel model for the investigation of metabolic regulation by nuclear receptors.  相似文献   

4.
Mixed background SHP(-/-) mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1α expression in brown adipocytes. However, congenic SHP(-/-) mice on the C57BL/6 background showed normal expression of PGC-1α and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP(-/-) mice. Compared with their C57BL/6 wild-type counterparts, SHP(-/-) mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased β-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP(-/-) mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPARα) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPARα-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPARα-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes.  相似文献   

5.
6.
7.
8.
Coiled-coil domain containing 134 (CCDC134) has been shown to serve as an immune cytokine to exert antitumor effects and to act as a novel regulator of hADA2a to affect PCAF acetyltransferase activity. While Ccdc134 loss causes abnormal brain development in mice, the significance of CCDC134 in neuronal development in vivo is controversial. Here, we report that CCDC134 is highly expressed in Purkinje cells (PCs) at all developmental stages and regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Ccdc134 in mouse neural stem cells (NSCs) caused defects in cerebellar morphogenesis, including a decrease in the number of PCs and impairment of PC dendritic growth, as well as abnormal granule cell development. Moreover, loss of Ccdc134 caused progressive motor dysfunction with deficits in motor coordination and motor learning. Finally, Ccdc134 deficiency inhibited Wnt signaling but increased Ataxin1 levels. Our findings provide evidence that CCDC134 plays an important role in cerebellar development, possibly through regulating Wnt signaling and Ataxin1 expression levels, and in controlling cerebellar function for motor coordination and motor learning, ultimately making it a potential contributor to cerebellar pathogenesis.  相似文献   

9.
10.
Testicular orphan nuclear receptor 4 (TR4) has been suggested to play important roles in the development and functioning of the central nervous system (CNS). We find reduced myelination in TR4 knockout (TR4(-/-)) mice, which is particularly obvious in forebrains and in early developmental stages. Further analysis reveals that CC-1-positive (CC-1+) oligodendrocytes are decreased in TR4(-/-) forebrains. The O4+ signals are also reduced in TR4(-/-) forebrains when examined at postnatal d 7. However, the number and proliferation rate of platelet-derived growth factor receptor alpha-positive (PDGFalphaR+) oligodendrocyte precursor cells (OPCs) remain unaffected in these regions, suggesting that loss of TR4 interrupts oligodendrocyte differentiation. This is further supported by the observation that CC-1+ oligodendrocytes derived from 5-bromo-2'-deoxyuridine incorporating OPCs are significantly reduced in TR4(-/-) forebrains. We also find higher Jagged1 expression levels in axon fiber-enriched regions in TR4(-/-) forebrains, suggesting a more activated Notch signaling in these regions that correlates with previous reports showing that Notch activation inhibits oligodendrocyte differentiation. Together, our results suggest that TR4 is required for proper myelination in the CNS and is particularly important for oligodendrocyte differentiation and maturation in the forebrain regions. The altered Jagged1-Notch signaling in TR4(-/-) forebrain underlies a potential mechanism that contributes to the reduced myelination in the forebrain.  相似文献   

11.
DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on the X chromosome, gene 1) (NROB1) is an atypical member of the nuclear receptor family, which lacks the classical zinc finger DNA binding domain and acts as a coregulator of a number of nuclear receptors. In this study, we have found that DAX-1 is a novel coregulator of the orphan nuclear receptor Nur77 (NR4A1). We demonstrate that DAX-1 represses the Nur77 transactivation by transient transfection assays. Specific interaction between Nur77 and DAX-1 was detected by coimmunoprecipitation, yeast two-hybrid, and glutathione-S-transferase pull-down assays. The ligand binding domain of DAX-1 and the activation function-2 domain of Nur77 were determined as the direct interaction domains between DAX-1 and Nur77. In vitro competition binding assay showed that DAX-1 repressed Nur77 transactivation through the competition with steroid receptor coactivator-1 for the binding of Nur77. Moreover, DAX-1 repressed Nur77- and LH-dependent increase of cytochrome P450 protein 17 promoter activity in transient transfection assays. Furthermore, Nur77-mediated transactivation was significantly increased by down-regulation of DAX-1 expression with DAX-1 small interfering RNA in testicular Leydig cell line, K28. LH treatment induced a transient increase in Nur77 mRNA, whereas LH repressed DAX-1 expression in a time- and dose-dependent manner in K28 cells. In addition, immunohistochemical analysis showed the expression of Nur77 in mouse testicular Leydig cells. These results suggest that DAX-1 acts as a novel coregulator of the orphan nuclear receptor Nur77, and that the DAX-1 may play a key role in the regulation of Nur77-mediated steroidogenesis in testicular Leydig cells.  相似文献   

12.
CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti‐CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive‐like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 463–484, 2015  相似文献   

13.
Testicular orphan nuclear receptor 4 (TR4) is specifically and stage-dependently expressed in late-stage pachytene spermatocytes and round spermatids. In the developing mouse testis, the highest expression of TR4 can be detected at postnatal days 16 to 21 when the first wave of spermatogenesis progresses to late meiotic prophase. Using a knockout strategy to delete TR4 in mice, we found that sperm production in TR4(-/-) mice is reduced. The comparison of testes from developing TR4(+/+) and TR4(-/-) mice shows that spermatogenesis in TR4(-/-) mice is delayed. Analysis of the first wave of spermatogenesis shows that the delay can be due to delay and disruption of spermatogenesis at the end of late meiotic prophase and subsequent meiotic divisions. Seminiferous tubule staging shows that stages X to XII, where late meiotic prophase and meiotic divisions take place, are delayed and disrupted in TR4(-/-) mice. Histological examination of testis sections from TR4(-/-) mice shows degenerated primary spermatocytes and some necrotic tubules. Testis-specific gene analyses show that the expression of sperm 1 and cyclin A1, which are genes expressed at the end of meiotic prophase, was delayed and decreased in TR4(-/-) mouse testes. Taken together, results from TR4(+/+) and TR4(-/-) mice indicate that TR4 is essential for normal spermatogenesis in mice.  相似文献   

14.
The rev-erbAalpha orphan protein belongs to the steroid nuclear receptor superfamily. No ligand has been identified for this protein, and little is known of its function in development or physiology. In this study, we focus on 1) the distribution of the rev-erbAalpha protein in adult fast- and slow-twitch skeletal muscles and muscle fibers and 2) how the rev-erbAalpha protein influences myosin heavy chain (MyHC) isoform expression in mice heterozygous (+/-) and homozygous (-/-) for a rev-erbAalpha protein null allele. In the fast-twitch extensor digitorum longus muscle, rev-erbAalpha protein expression was linked to muscle fiber type; however, MyHC isoform expression did not differ between wild-type, +/-, or -/- mice. In the slow-twitch soleus muscle, the link between rev-erbAalpha protein and MyHC isoform expression was more complex than in the extensor digitorum longus. Here, a significantly higher relative amount of the beta/slow (type I) MyHC isoform was observed in both rev-erbAalpha -/- and +/- mice vs. that shown in wild-type controls. A role for the ratio of thyroid hormone receptor proteins alpha1 to alpha2 in modulating MyHC isoform expression can be ruled out because no differences were seen in MyHC isoform expression between thyroid hormone receptor alpha2-deficient mice (heterozygous and homozygous) and wild-type mice. Therefore, our data are compatible with the rev-erbAalpha protein playing an important role in the regulation of skeletal muscle MyHC isoform expression.  相似文献   

15.
16.
17.
King-Jones K  Charles JP  Lam G  Thummel CS 《Cell》2005,121(5):773-784
A critical determinant of insect body size is the time at which the larva stops feeding and initiates wandering in preparation for metamorphosis. No genes have been identified that regulate growth by contributing to this key developmental decision to terminate feeding. We show here that mutations in the DHR4 orphan nuclear receptor result in larvae that precociously leave the food to form premature prepupae, resulting in abbreviated larval development that translates directly into smaller and lighter animals. In addition, we show that DHR4 plays a central role in the genetic cascades triggered by the steroid hormone ecdysone at the onset of metamorphosis, acting as both a repressor of the early ecdysone-induced regulatory genes and an inducer of the betaFTZ-F1 midprepupal competence factor. We propose that DHR4 coordinates growth and maturation in Drosophila by mediating endocrine responses to the attainment of critical weight during larval development.  相似文献   

18.
弧核受体的研究进展   总被引:2,自引:0,他引:2  
Son JC 《生理科学进展》2001,32(2):177-179
弧核受体是没有配体或尚未发现配体的核受体。数十种弧核受体亚家庭广泛分布于机体各组织。弧核受体可以在弧核受体相关辅助因子的调控下,以单体或多聚体形式与弧核受体作用元件作用来调控基因转录,从而调节机体的各种生理活动。目前已有部分弧核受体的配体被发现,这对弧核受体的研究具有重要意义。  相似文献   

19.
The estrogen-related receptor alpha (ERRα) is an orphan receptor belonging to the nuclear receptor superfamily that regulates a number of target genes encoding enzymes that participate in various metabolic pathways involved in maintaining energy balance in animals. In this study, whether long-term caloric restriction (alternate days of fasting for 3 months) in mice modulates the expression of ERRα in various tissues was investigated. Western blot analyses showed positive immunoreactive ERRα protein (53 kDa) band in various mice tissue extracts, though at varying levels. Heart, kidney, and skeletal muscles expressed significant levels of ERRα, with a comparatively lower level detected in the intestine, brain, and liver. Cardiac ERRα expression was the highest, with the least detected in the liver. Caloric restricted mice exhibited a significant increase in ERRα level in the heart (5.45-fold), kidney (3.70-fold), skeletal muscle (3.0-fold), small intestine (2.72-fold), and liver (2.44-fold) extracts as compared to ad libitum fed. However, caloric restriction could not evoke any detectable receptor level change in the brain. Notably, the highest ERRα up-regulation was detected in the heart. This up-regulation in ERRα level especially in highly oxidative tissues such as heart, kidney, small intestine, and skeletal muscle of caloric restricted mice may be helpful in modulating ERRα responsive genes that participates in maintaining energy balance. This may potentially strengthen the metabolic and biochemical adaptation in such tissues, which is necessary for animal survival under long-term caloric restriction.  相似文献   

20.
The liver receptor homolog-1 (LRH-1; NR5A2) and steroidogenic factor-1 (SF-1; NR5A1) are two orphan members of the Ftz-F1 subfamily of nuclear receptors. LRH-1 is expressed in tissues derived from endoderm, including intestine, liver and exocrine pancreas, as well as in the ovary. In these tissues, LRH-1 plays a predominant role in development, reverse cholesterol transport, bile-acid homeostasis and steroidogenesis. SF-1 expression is confined to steroidogenic tissues and the hypothalamo-pituitary-adrenal axis, where it is involved in the control of development, differentiation, steroidogenesis and sexual determination. In this article, we will review data concerning the structure, regulation and function of LRH-1. These data highlight structural similarities between LRH-1 and other Ftz-F1 members but also underscore important functional differences, assigning to LRH-1 a unique position among nuclear receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号