首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKC is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKC by RNAi (sh-PKC) or expression of the kinase-dead (Lys376Arg) mutant of PKC (PKCKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (-H2AX), a hallmark for DNA damage, was altered by sh-PKC, and sh-PKC completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKC-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKC and caspase-3, suggesting that PKCKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKC-dependent and -independent manners. In summary, these findings suggest that the activation of a PKC-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment. DNA damage; caspase-3; Akt  相似文献   

2.
We showed previously that enteropathogenic Escherichia coli (EPEC) infection of intestinal epithelial cells induces inflammation by activating NF-B and upregulating IL-8 expression. We also reported that extracellular signal-regulated kinases (ERKs) participate in EPEC-induced NF-B activation but that other signaling molecules such as PKC may be involved. The aim of this study was to determine whether PKC is activated by EPEC and to investigate whether it also plays a role in EPEC-associated inflammation. EPEC infection induced the translocation of PKC from the cytosol to the membrane and its activation as determined by kinase activity assays. Inhibition of PKC by the pharmacological inhibitor rottlerin, the inhibitory myristoylated PKC pseudosubstrate (MYR-PKC-PS), or transient expression of a nonfunctional PKC significantly suppressed EPEC-induced IB phosphorylation. Although PKC can activate ERK, MYR-PKC-PS had no effect on EPEC-induced stimulation of this pathway, suggesting that they are independent events. PKC can regulate NF-B activation by interacting with and activating IB kinase (IKK). Coimmunoprecipitation studies showed that the association of PKC and IKK increased threefold 60 min after infection. Kinase activity assays using immunoprecipitated PKC-IKK complexes from infected intestinal epithelial cells and recombinant IB as a substrate showed a 2.5-fold increase in IB phosphorylation. PKC can also regulate NF-B by serine phosphorylation of the p65 subunit. Serine phosphorylation of p65 was increased after EPEC infection but could not be consistently attenuated by MYR-PKC-PS, suggesting that other signaling events may be involved in this particular arm of NF-B regulation. We speculate that EPEC infection of intestinal epithelial cells activates several signaling pathways including PKC and ERK that lead to NF-B activation, thus ensuring the proinflammatory response. inflammation; enteropathogenic Escherichia coli; nuclear factor-B; protein kinase C; IB kinase; extracellular signal-regulated kinase  相似文献   

3.
We have previously shown that protein kinase C (PKC) and/or PKC are necessary for endothelin-1 (ET-1)-induced human myometrial contraction at the end of pregnancy (Eude I, Paris P, Cabrol D, Ferré F, and Breuiller-Fouché M. Biol Reprod 63: 1567–1573, 2000). Here, we report that the selective inhibitor of PKC isoform, Rottlerin, does not prevent ET-1-induced contractions, whereas LY-294002, a phosphatidylinositol (PI) 3-kinase inhibitor, affects the contractile response. This study characterized the in vitro contractile response of cultured human pregnant myometrial cells to ET-1 known to induce in vitro contractions of intact uterine smooth muscle strips. Cultured myometrial cells incorporated into collagen lattices have the capacity to reduce the size of these lattices, referred to as lattice contraction. Neither the selective conventional PKC isoform inhibitor, Gö-6976, or rottlerin affected myometrial cell-mediated gel contraction by ET-1, whereas this effect was blocked by LY-294002. We found that treatment of myometrial cell lattices with an inhibitory peptide specific for PKC or with an antisense against PKC resulted in a significant loss of ET-1-induced contraction. Evidence is also presented by using confocal microscopy that ET-1 induced translocation of PKC to a structure coincident with the actin-rich microfilaments of the cytoskeleton. We have shown that PKC has a role in the actin organization in ET-1-stimulated cells. Accordingly, our results suggest that PKC plays a role in myometrial contraction in pregnant women. protein kinase C; uterine smooth muscle; parturition  相似文献   

4.
The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (, I, II, and ), novel [, , , and µ (also known as PKD),], and atypical ( and /), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-specific PKC activity in the microvascular endothelium in response to phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). Isoform activity was demonstrated by cytosol-to-membrane translocation after PMA treatment and phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein after PMA and DAG treatment. Specific isoforms were inhibited by using both antisense oligonucleotides and pharmacological agents. The data showed partial cytosol-to-membrane translocation of isoforms , I, and and complete translocation of PKC and PKD in response to PMA. Furthermore, antisense treatment and pharmacological studies indicated that the novel isoform PKC and PKD are both required for PMA- and DAG-induced MARCKS phosphorylation and hyperpermeability in pulmonary microvascular endothelial cells, whereas isoforms , I, and were dispensable with regard to these same phenomena. signal transduction; permeability; myristolated alanine-rich C kinase substrate; microvasculature; pulmonary endothelium  相似文献   

5.
ATP, a purinergic receptor agonist, has been shown to be involved in vascular smooth muscle (VSM) cell DNA synthesis and cell proliferation during embryonic and postnatal development, after injury, and in atherosclerosis. One mechanism that ATP utilizes to regulate cellular function is through activation of ERK1/2. In the present study, we provide evidence that ATP-dependent activation of ERK1/2 in VSM cells utilizes specific isoforms of the multifunctional serine/threonine kinases, PKC, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) as intermediates. Selective inhibition of PKC- activity with rottlerin, or adenoviral overexpression of kinase-negative PKC-, attenuated the ATP- and phorbol 12,13-dibutyrate (PDBu)-stimulated ERK1/2 activation. Inhibition of PKC- activity with Gö-6976, or adenoviral overexpression of kinase-negative PKC-, was ineffective. Alternatively, treatment with KN-93, a selective inhibitor of CaMKII activation, or adenoviral overexpression of kinase-negative CaMKII-2, inhibited ATP-dependent activation of ERK1/2 but had no effect on PDBu- or PDGF-stimulated ERK1/2. In addition, adenoviral overexpression of dominant-negative ras (Ad.HA-RasN17) partially inhibited the ATP- and PDBu-induced activation of ERK1/2 and blocked ionomycin- and EGF-stimulated ERK1/2, and inhibition of tyrosine kinases with AG-1478, an EGFR inhibitor, or the src family kinase inhibitor PP2 attenuated ATP-stimulated ERK1/2 activation. Taken together, these data indicate that PKC- and CaMKII-2 coordinately mediate ATP-dependent transactivation of EGF receptor, resulting in increased ERK1/2 activity in VSM cells. protein kinase C-; calcium/calmodulin-dependent protein kinase II- 2; extracellular signal-regulated kinase 1/2; epidermal growth factor receptor transactivation; adenovirus  相似文献   

6.
Contraction of smooth muscle depends on the balance of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. Because MLCK activation depends on the activation of calmodulin, which requires a high Ca2+ concentration, phosphatase inhibition has been invoked to explain contraction at low cytosolic Ca2+ levels. The link between activation of the Ca2+-independent protein kinase C (PKC) and MLC phosphorylation observed in the esophagus (ESO) (Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CLA, Harnett KM, Behar J, and Biancani P. Am J Physiol Gastrointest Liver Physiol 281: G467–G478, 2001), however, has not been elucidated. We used phosphatase and kinase inhibitors and antibodies to signaling enzymes in combination with intact and saponin-permeabilized isolated smooth muscle cells from ESO and lower esophageal sphincter (LES) to examine PKC-dependent, Ca2+-independent signaling in ESO. The phosphatase inhibitors okadaic acid and microcystin-LR, as well as an antibody to the catalytic subunit of type 1 protein serine/threonine phosphatase, elicited similar contractions in ESO and LES. MLCK inhibitors (ML-7, ML-9, and SM-1) and antibodies to MLCK inhibited contraction induced by phosphatase inhibition in LES but not in ESO. The PKC inhibitor chelerythrine and antibodies to PKC, but not antibodies to PKCII, inhibited contraction of ESO but not of LES. In ESO, okadaic acid triggered translocation of PKC from cytosolic to particulate fraction and increased activity of integrin-linked kinase (ILK). Antibodies to the mitogen-activated protein (MAP) kinases ERK1/ERK2 and to ILK, and the MAP kinase kinase (MEK) inhibitor PD-98059, inhibited okadaic acid-induced ILK activity and contraction of ESO. We conclude that phosphatase inhibition potentiates the effects of MLCK in LES but not in ESO. Contraction of ESO is mediated by activation of PKC, MEK, ERK1/2, and ILK. protein kinase C; myosin light chain kinase; phosphatase; integrin-linked kinase  相似文献   

7.
Extracellular nucleotides such as ATP are present in abundance at sites of inflammation and tissue damage, and these agents exert a potent modulatory effect on macrophage/monocyte function via the nucleotide receptor P2X7. In this regard, after exposure to bacterial LPS, P2X7 activation augments expression of the inducible nitric oxide (NO) synthase and production of NO in macrophages. Because P2X7 has been reported to stimulate certain members of the MAP kinase family (ERK1/2) and can enhance the DNA-binding activity of NF-B, we tested the hypothesis that LPS and nucleotides regulate NF-B-dependent inflammatory events via cross talk with MAPK-associated pathways. In this regard, the present studies revealed that cotreatment of macrophages with LPS and the P2X7-selective ligand 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) results in the cooperative activation of NF-B DNA-binding activity and a sustained attenuation of levels of the NF-B inhibitory protein IB. Interestingly, a persistent reduction in IB levels is also observed when the MEK1/2 inhibitor U0126 is coadministered with LPS, suggesting that components of the MEK/ERK pathway are involved in regulating IB protein expression and/or turnover. The observation that U0126 and BzATP exhibit overlapping actions with respect to LPS-induced changes in IB levels is supported by the finding that Ras activation, which is upstream of MEK/ERK activation, is reduced upon macrophage cotreatment with BzATP and LPS compared with the effects of BzATP treatment alone. These data are consistent with the concept that the Ras/MEK/ERK pathways are involved in regulating NF-B/IB-dependent inflammatory mediator production and suggest a previously unidentified mechanism by which nucleotides can modulate LPS-induced action via cross talk between NF-B and Ras/MEK/MAPK-associated pathways. nucleotide receptors; mitogen-activated protein kinases; nuclear factor-B; monocytes/macrophages; cytokines  相似文献   

8.
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by 50% within these cells compared with wild-type controls (WT/AT1). The remaining 50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKC) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKC signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1 cells compared with WT/AT1 cells (P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1 cells with a PKC pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKC pseudosubstrate-treated WT/AT1 cells (P < 0.01) and was completely blocked in SYF/AT1 cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKC signaling, respectively. Src family tyrosine kinases; angiotensin II  相似文献   

9.
Activation of NF-B requires the phosphorylation and degradation of its associated inhibitory proteins, IB. Previously, we reported that the extracellular signal-regulated kinase (ERK) is required for IL-1 to induce persistent activation of NF-B in cultured rat vascular smooth muscle cells (VSMCs). The present study examined the mechanism by which the ERK signaling cascade modulates the duration of NF-B activation. In cultured rat VSMCs, IL-1 activated ERK and induced degradation of both IB and IB, which was associated with nuclear translocation of both ribosomal S6 kinase (RSK)1 and NF-B p65. RSK1, a downstream kinase of ERK, was associated with an IB/NF-B complex, which was independent of the phosphorylation status of RSK1. Treatment of VSMCs with IL-1 decreased IB in the RSK1/IB/NF-B complex, an effect that was attenuated by inhibition of ERK activation. Knockdown of RSK1 by small interference RNA attenuated the IL-1-induced IB decrease without influencing ether ERK phosphorylation or the earlier IB degradation. By using recombinant wild-type and mutant IB proteins, both active ERK2 and RSK1 were found to directly phosphorylate IB, but only active RSK1 phosphorylated IB on Ser19 and Ser23, two sites known to mediate the subsequent ubiquitination and degradation. In conclusion, in the ERK signaling cascade, RSK1 is a key component that directly phosphorylates IB and contributes to the persistent activation of NF-B by IL-1. extracellular signal-regulated kinase; in vitro phosphorylation assay; recombinant proteins; small interference RNA; vascular smooth muscle cell  相似文献   

10.
Protein kinase C (PKC) is involved in the process of ischemic preconditioning (IPC), although the precise mechanism is still a subject of debate. Using specific PKC inhibitors, we investigated which PKC isoforms were involved in IPC of the human atrial myocardium sections and to determine their temporal relationship to the opening of mitochondrial potassium-sensitive ATP (mitoKATP) channels. Right atrial muscles obtained from patients undergoing elective cardiac surgery were equilibrated and then randomized to receive any of the following protocols: aerobic control, 90-min simulated ischemia/120-min reoxygenation, IPC using 5-min simulated ischemia/5-min reoxygenation followed by 90-min simulated ischemia/120-min reoxygenation and finally, PKC inhibitors were added 10 min before and 10 min during IPC followed by 90-min simulated ischemia/120-min reoxygenation. The PKC isoforms inhibitors investigated were V1–2 peptide, GO-6976, rottlerin, and LY-333531 for PKC-, -, - and -, respectively. To investigate the relation of PKC isoforms to mitoKATP channels, PKC inhibitors found to be involved in IPC were added 10 min before and 10 min during preconditioning by diazoxide followed by 90-min simulated ischemia/120-min reoxygenation in a second experiment. Creatine kinase leakage and methylthiazoletetrazolium cell viability were measured. Phosphorylation of PKC isoforms after activation of the sample by either diazoxide or IPC was detected by using Western blot analysis and then analyzed by using Scion image software. PKC- and - inhibitors blocked IPC, whereas PKC- and - inhibitors did not. The protection elicited by diazoxide, believed to be via mitoKATP channels opening, was blocked by the inhibition of PKC- but not - isoforms. In addition, diazoxide caused increased phosphorylation of PKC- to the same extent as IPC but did not affect the phosphorylation of PKC-, a process believed to be critical in PKC activation. The results demonstrate that PKC- and - are involved in IPC of the human myocardium with PKC- being upstream and PKC- being downstream of mitoKATP channels. cardioprotection; protein kinase C isoforms  相似文献   

11.
Transforming growth factor- (TGF-) stimulates myofibroblast transdifferentiation, leading to type I collagen accumulation and fibrosis. We investigated the function of Src in TGF--induced collagen I accumulation. In human mesangial cells, PTyr416 Src (activated Src) was 3.3-fold higher in TGF--treated cells than in controls. Src activation by TGF- was blocked by rottlerin and by a dominant negative mutant of protein kinase C (PKC), showing that TGF- activates Src by a PKC-based mechanism. Pharmacological inhibitors and a dominant negative Src mutant prevented the increase in collagen type I secretion in cells exposed to TGF-. Similarly, on-target Src small interference RNA (siRNA) prevented type I collagen secretion in response to TGF-, but off-target siRNA complexes had no effect. It is well established in mesangial cells that upregulation of type I collagen by TGF- requires extracellular signal-regulated kinase 1/2 (ERK1/2), and we found that activation of ERK1/2 by TGF- requires Src. In conclusion, these results suggest that stimulation of collagen type I secretion by TGF- requires a PKC-Src-ERK1/2 signaling motif. mesangial cells; fibrosis; glomerulus; transforming growth factor-  相似文献   

12.
Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1 (IL-1), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1 in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1 modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1 increases MMP-2 activity in the conditioned media. IL-1 activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKC/1, and inhibition of these cascades partially inhibited IL-1-stimulated increases in MMP-2. Inhibition of PKC/1 failed to inhibit ERK1/2. However, concurrent inhibition of PKC/1 and ERK1/2 almost completely inhibited IL-1-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-B (NF-B) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1 modulates expression and activity of MMP-2 in CMECs. MMP-2; protein kinase C; ERK1/2; JNK  相似文献   

13.
Sex hormone status has emerged as an important modulator of coronary physiology and cardiovascular disease risk in both males and females. Our previous studies have demonstrated that testosterone increases protein kinase C (PKC) expression and activity in coronary smooth muscle (CSMC). Because PKC has been implicated in regulation of proliferation and apoptosis in other cell types, we sought to determine if testosterone modulates CSMC proliferation and/or apoptosis through PKC. Porcine CSMC cultures (passages 2–6) from castrated males were treated with testosterone for 24 h. Testosterone (20 and 100 nM) decreased [3H]thymidine incorporation in proliferating CSMC to 59 ± 5.3 and 33.1 ± 4.5% of control. Flow cytometric analysis demonstrated that testosterone induced G1 arrest in CSMC with a concomitant reduction in the S phase cells. Testosterone reduced protein levels of cyclins D1 and E and phosphorylation of retinoblastoma protein while elevating levels of p21cip1 and p27kip1. There were no significant differences in the levels of cyclins D3, CDK2, CDK4, or CDK6. Testosterone significantly reduced kinase activity of CDK2 and -6, but not CDK4, -7, or -1. PKC small interfering RNA (siRNA) prevented testosterone-mediated G1 arrest, p21cip1 upregulation, and cyclin D1 and E downregulation. Furthermore, testosterone increased CSMC apoptosis in a dose-dependent manner, which was blocked by either PKC siRNA or caspase 3 inhibition. These findings demonstrate that the anti-proliferative, pro-apoptotic effects of testosterone on CSMCs are substantially mediated by PKC. androgens; coronary; smooth muscle; cell cycle  相似文献   

14.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

15.
Transactivation of EGF receptors by G protein-coupled receptors is a well-known phenomenon. This process involves the ectodomain shedding of growth factors in the EGF family by matrix metalloproteinases. However, many of these studies employ transformed and/or cultured cells that overexpress labeled growth factors. In addition, few studies have shown that EGF itself is the growth factor that is shed and is responsible for transactivation of the EGF receptor. In this study, we show that freshly isolated, nontransformed lacrimal gland acini express two of the three known 1-adrenergic receptors (ARs), namely, 1B- and 1D-ARs. 1D-ARs mediate phenylephrine (an 1-adrenergic agonist)-induced protein secretion and activation of p42/p44 MAPK, because the 1D-AR inhibitor BMY-7378, but not the 1A-AR inhibitor 5-methylurapidil, inhibits these processes. Activation of p42/p44 MAPK occurs through transactivation of the EGF receptor, which is inhibited by the matrix metalloproteinase ADAM17 inhibitor TAPI-1. In addition, phenylephrine caused the shedding of EGF from freshly isolated acini into the buffer. Incubation of freshly isolated cells with conditioned buffer from cells treated with phenylephrine resulted in activation of the EGF receptor and p42/p44 MAPK. The EGF receptor inhibitor AG1478 and an EGF-neutralizing antibody blocked this activation of p42/p44 MAPK. We conclude that in freshly isolated lacrimal gland acini, 1-adrenergic agonists activate the 1D-AR to stimulate protein secretion and the ectodomain shedding of EGF to transactivate the EGF receptor, potentially via ADAM17, which activates p42/p44 MAPK to negatively modulate protein secretion. epidermal growth factor ectodomain shedding; protein secretion; signal transduction  相似文献   

16.
Upregulation of inducible nitric oxide synthase (iNOS) is key to oxidant-induced disruption of intestinal (Caco-2) monolayer barrier, and EGF protects against this disruption by stabilizing the cytoskeleton. PLC- appears to be essential for monolayer integrity. We thus hypothesized that PLC- activation is essential in EGF protection against iNOS upregulation and the consequent cytoskeletal oxidation and disarray and monolayer disruption. Intestinal cells were transfected to stably overexpress PLC- or to inhibit its activation and were then pretreated with EGF ± oxidant (H2O2). Wild-type (WT) intestinal cells were treated similarly. Relative to WT monolayers exposed to oxidant, pretreatment with EGF protected monolayers by: increasing native PLC- activity; decreasing six iNOS-related variables (iNOS activity/protein, NO levels, oxidative stress, actin oxidation/nitration); increasing stable F-actin; maintaining actin stability; and enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected monolayers overexpressing PLC- (+2.3-fold) were protected, as indicated by decreases in all measures of iNOS-driven pathway and enhanced actin and barrier integrity. Overexpression-induced inhibition of iNOS was potentiated by low doses of EGF. Stable inhibition of PLC- prevented all measures of EGF protection against iNOS upregulation. We conclude that 1) EGF protects against oxidative stress disruption of intestinal barrier by stabilizing F-Actin, largely through the activation of PLC- and downregulation of iNOS pathway; 2) activation of PLC- is by itself essential for cellular protection against oxidative stress of iNOS; and 3) the ability to suppress iNOS-driven reactions and cytoskeletal oxidation and disassembly is a novel mechanism not previously attributed to the PLC family of isoforms. actin cytoskeleton; gut barrier; growth factors; oxidative stress; nitration and carbonylation; reactive nitrogen metabolites; phospholipase C isoform; inflammatory bowel disease; Caco-2 cells  相似文献   

17.
Maintenance of bone structural integrity depends in part on the rate of apoptosis of bone-forming osteoblasts. Because substrate adhesion is an important regulator of apoptosis, we have investigated the role of focal adhesions in regulating bone cell apoptosis. To test this, we expressed a truncated form of -actinin (ROD-GFP) that competitively displaces endogenous -actinin from focal adhesions, thus disrupting focal adhesions. Immunofluorescence and morphometric analysis of vinculin and tyrosine phosphorylation revealed that ROD-GFP expression dramatically disrupted focal adhesion organization and reduced tyrosine phosphorylation at focal adhesions. In addition, Bcl-2 protein levels were reduced in ROD-GFP-expressing cells, but caspase 3 cleavage, poly(ADP-ribose) polymerase cleavage, histone H2A.X phosphorylation, and cytotoxicity were not increased due to ROD-GFP expression alone. Increases in both ERK and Akt phosphorylation were also observed in ROD-GFP-expressing cells, although inhibition of either ERK or Akt individually or together failed to induce apoptosis. However, we did find that ROD-GFP expression sensitized, whereas -actinin-GFP expression protected, cells from TNF--induced apoptosis. Further investigation revealed that activation of TNF--induced survival signals, specifically Akt phosphorylation and NF-B activation, was inhibited in ROD-GFP-expressing cells. The reduced expression of antiapoptotic Bcl-2 and inhibited survival signaling rendered ROD-GFP-expressing cells more susceptible to TNF--induced apoptosis. Thus we conclude that -actinin plays a role in regulating cell survival through stabilization of focal adhesions and regulation of TNF--induced survival signaling. tumor necrosis factor-; survival; cytoskeleton; nuclear factor-B  相似文献   

18.
Trefoil factor 3 (intestinal trefoil factor) is a cytoprotective factor in the gut. Herein we compared the effect of trefoil factor 3 with tumor necrosis factor- on 1) activation of NF-B in intestinal epithelial cells; 2) expression of Twist protein (a molecule essential for downregulation of nuclear factor-B activity in vivo); and 3) production of interleukin-8. We showed that Twist protein is constitutively expressed in intestinal epithelial cells. Tumor necrosis factor- induced persistent degradation of Twist protein in intestinal epithelial cells via a signaling pathway linked to proteasome, which was associated with prolonged activation of NF-B. In contrast to tumor necrosis factor, trefoil factor 3 triggered transient activation of NF-B and prolonged upregulation of Twist protein in intestinal epithelial cells via an ERK kinase-mediated pathway. Unlike tumor necrosis factor-, transient activation of NF-B by trefoil factor 3 is not associated with induction of IL-8 in cells. To examine the role of Twist protein in intestinal epithelial cells, we silenced the Twist expression by siRNA. Our data showed that trefoil factor 3 induced interleukin-8 production after silencing Twist in intestinal epithelial cells. Together, these observations indicated that 1) trefoil factor 3 triggers a diverse signal from tumor necrosis factor- on the activation of NF-B and its associated molecules in intestinal epithelial cells; and 2) trefoil factor 3-induced Twist protein plays an important role in the modulation of inflammatory cytokine production in intestinal epithelial cells. trefoil factor 3; signal transduction  相似文献   

19.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

20.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号