首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Spectacular color changes of fishes, frogs and other lower vertebrates are due to the motile activities of specialized pigment containing cells. Pigment cells are interesting for biosensing purposes since they provide an easily monitored physiological phenomenon. Melanophores, containing dark brown melanin pigment granules, constitute an important class of chromatophores. Their melanin-filled pigment granules may be stimulated to undergo rapid dispersion throughout the melanophores (cells appear dark), or aggregation to the center of the melanophores (cells appear light). This simple physiological response can easily be measured in a photometer. Selected G protein coupled receptors can be functionally expressed in cultured frog melanophores. Here, we demonstrate the use of recombinant frog melanophores as a biosensor for the detection of opioids. Melanophores were transfected with the human opioid receptor 3 and used for opiate detection. The response to the opioid receptor agonist morphine and a synthetic opioid peptide was analyzed by absorbance readings in an aggregation assay. It was shown that both agonists caused aggregation of pigment granules in the melanophores, and the cells appeared lighter. The pharmacology of the expressed receptors was very similar to its mammalian counterpart, as evidenced by competitive inhibition by increasing concentrations of the opioid receptor inhibitor naloxone. Transfection of melanophores with selected receptors enables the creation of numerous melanophore biosensors, which respond selectively to certain substances. The melanophore biosensor has potential use for measurement of substances in body fluids such as saliva, blood plasma and urine.  相似文献   

2.
Hedgehog (Hh) signaling is an important regulator of embryonic patterning, tissue regeneration, stem cell renewal and cancer growth. A purine derivative named purmorphamine was previously found to activate the Hh pathway and affect osteoblast differentiation through an unknown mechanism. We demonstrate here that purmorphamine directly targets Smoothened, a critical component of the Hh signaling pathway.  相似文献   

3.
4.
5.
6.
7.
Melanosome movement represents a good model of cytoskeleton-mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nomega-nitro-L-arginine methyl ester (L-NAME) induced dispersion in melanophores pre-aggregated with melatonin. Activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) or calcium-dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal-regulated kinase (MEK)-ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of L-NAME-induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in L-NAME-dispersed melanophores. L-NAME also caused dispersion in latrunculin-B-treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the L-NAME-induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

8.
Hayashi H  Fujii R 《Zoological science》2001,18(9):1207-1215
The possible involvement of nitric oxide (NO) in regulating the motile activities of teleostean melanophores was studied in the dark chub Zacco temmincki (Cyprinidae, Cypriniformes) and in the translucent glass catfish Kryptopterus bicirrhis (Siluridae, Siluriformes). NO donors, including (+/-)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexaneamide (NOR1), molsidomine (MSD), sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), had no pigment-aggregating action on melanophores, but actively dispersed melanosomes in those cells. Among those reagents, NOR 1, a spontaneous releaser of NO, was the most effective. Inhibitors for nitric oxide synthase (NOS), i.e. N omega-nitro-L-arginine methyl ester (L-NNA), N omega-nitro-L-arginine (L-NAME) and N omega-monomethyl-L-arginine (L-NMMA), showed melanosome-aggregating effects. A membrane-permeable analogue of cyclic guanosine-3',5'-monophosphate (8-Br-cGMP) was effective in dispersing melanosomes. The sum of these results suggests that NO plays an active role in the elaborate control of color changes in teleosts by dispersing pigment in melanophores via activation of soluble guanylyl cyclase to increase cytosolic levels of cGMP.  相似文献   

9.
10.
Both activin-like signaling and Notch signaling play fundamental roles during early development. Activin-like signaling is involved in mesodermal induction and can induce a broad range of mesodermal genes and tissues from prospective ectodermal cells (animal caps). On the other hand, Notch signaling plays important roles when multipotent precursor cells achieve a specific cell fate. However, the relationship between these two signal pathways is not well understood. Here, we show that activin A induces Delta-1, Delta-2 and Notch expression and then activates Notch signaling in animal caps. Also, in vivo, ectopic activin-like signaling induced the ectopic expression of Delta-1 and Delta-2, whereas inhibition of activin-like signaling abolished the expression of Delta-1 and Delta-2. Furthermore, we show that MyoD, which is myogenic gene induced by activin A, can induce Delta-1 expression. However, MyoD had no effect on Notch expression, and inhibited Delta-2 expression. These results indicated that activin A induces Delta-1, Delta-2 and Notch by different cascades. We conclude that Notch signaling is activated when activin-like signaling induces various tissues from homogenous undifferentiated cells.  相似文献   

11.
The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of β-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.  相似文献   

12.
Communicative signaling activates 'Broca's' homolog in chimpanzees   总被引:1,自引:0,他引:1  
Broca's area, a cerebral cortical area located in the inferior frontal gyrus (IFG) of the human brain, has been identified as one of several critical regions associated with the motor planning and execution of language. Anatomically, Broca's area is most often larger in the left hemisphere, and functional imaging studies in humans indicate significant left-lateralized patterns of activation during language-related tasks. If, and to what extent, nonhuman primates, particularly chimpanzees, possess a homologous region that is involved in the production of their own communicative signals remains unknown. Here, we show that portions of the IFG as well as other cortical and subcortical regions in chimpanzees are active during the production of communicative signals. These findings are the first to provide direct evidence of the neuroanatomical structures associated with the production of communicative behaviors in chimpanzees. Significant activation in the left IFG in conjunction with other cortical and subcortical brain areas during the production of communicative signals in chimpanzees suggests that the neurological substrates underlying language production in the human brain may have been present in the common ancestor of humans and chimpanzees.  相似文献   

13.
In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25 mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by which neoplastic tumor cells generate a supportive microenvironment for tumor growth.  相似文献   

14.
15.
The effect of X-ray irradiation (700 R) on the physiological reactions of the dermal melanophores in Rana temporaria L. tadpoles of 20-22d stages of development has been studied. It has been shown that the irradiation of the aggregated dermal melanophores does not change the physiological state. As compared these data with previous ones a conclusion of high selective susceptibility to the X-ray irradiation of the tadpoles' epidermal melanophores has been drawn.  相似文献   

16.
Wnt factors are secreted ligands that affect different aspects of the nervous system behavior like neurodevelopment, synaptogenesis and neurodegeneration. In different model systems, Wnt signaling has been demonstrated to be regulated by heparan sulfate proteoglycans (HSPGs). Whether HSPGs modulate Wnt signaling in the context of neuronal behavior is currently unknown. Here we demonstrate that activation of Wnt signaling with the endogenous ligand Wnt-7a results in an increased of neurite outgrowth in the neuroblastoma N2a cell line. Interestingly, heparin induces glycogen synthase kinase-3beta (GSK-3beta) inhibition, beta-catenin stabilization and morphological differentiation in both N2a cells and in rat primary hippocampal neuronal cultures. We also show that heparin modulates Wnt-3a-induced stabilization of beta-catenin. Several extracellular matrix and membrane-attached HSPGs were found to be expressed in both in vitro neuronal models. Changes in the expression of specific HSPGs were observed upon differentiation of N2a cells. Taken together, our findings suggest that HSPGs may modulate canonical Wnt signaling for neuronal morphogenesis.  相似文献   

17.
18.
Zamani A  Qu Z 《FEBS letters》2012,586(16):2360-2365
Serotonin, a known neurotransmitter, also functions as an angiokine to promote angiogenesis. The majority of serotonin in the human body is stored in platelets, and platelet aggregation leads to significant release of serotonin in thrombotic tumor environment. We have investigated serotonin signaling in human endothelial cells. Through G-protein-coupled receptors, serotonin at physiologically relevant concentrations activated Src/PI3K/AKT/mTOR/p70S6K phosphorylation signaling, and this activation was similar to that seen with VEGF. This finding provides insight into the overlapping angiogenic signaling pathways stimulated by serotonin in tumor environment, and suggests one of the mechanisms underlying resistance to current VEGF-targeting antiangiogenic therapy against cancer.  相似文献   

19.
20.
Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5-1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号