首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.  相似文献   

2.
α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.  相似文献   

3.
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.  相似文献   

4.
P G Ekert  J Silke    D L Vaux 《The EMBO journal》1999,18(2):330-338
To study the role of various caspases during apoptosis, we have designed a series of caspase inhibitors based on the cowpox virus cytokine response modifier A (crmA) protein. Wild-type crmA inhibits caspases 1 and 8 and thereby protects cells from apoptosis triggered by ligation of CD95 or tumour necrosis factor (TNF) receptors, but it does not protect against death mediated by other caspases. By replacing the tetrapeptide pseudosubstrate region of crmA (LVAD) with tetrapeptides that are optimal substrates for the different families of caspases, or with the four residues from the cleavage site of the baculovirus protein p35 (DQMD), we have generated a family of caspase inhibitors that show altered ability to protect against cell death. Although DEVD is the optimal substrate for caspase 3, crmA DEVD was degraded rapidly and was a weaker inhibitor than crmA DQMD, which was not degraded. Unlike wild-type crmA and crmA DEVD, crmA DQMD was able to inhibit apoptosis caused by direct activation of caspase 3 and protected lymphoid cells from death induced by radiation and dexamethasone. Significantly, the protected cells were capable of sustained growth.  相似文献   

5.
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.  相似文献   

6.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), in the concentration range of 20 microM and above, induced arrest in the S-phase and apoptosis in the T cell-derived T-ALL lymphocytic leukemia cell line CEM-C7H2 which is deficient in functional p53 and p16. Expression of transgenic p16/INK4A, which causes arrest in G0/G1, markedly reduced the percentage of apoptotic cells. Antagonist antibodies to Fas or FasL, or constitutive expression of crmA did not diminish the extent of resveratrol-induced apoptosis. Furthermore, a caspase-8-negative, Fas-resistant Jurkat cell line was sensitive to resveratrol-induced apoptosis which could be strongly inhibited in the Jurkat as well as in the CEM cell line by z-VAD-fmk and z-IETD-fmk. The almost complete inhibition by z-IETD-fmk and the lack of inhibition by crmA suggested caspase-6 to be the essential initiator caspase. Western blots revealed the massive conversion of procaspase-6 to its active form, while caspase-3 and caspase-2 were proteolytically activated to a much lesser extent.  相似文献   

7.
Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis. [BMB Reports 2013; 46(12): 588-593]  相似文献   

8.
Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Many conventional cancer therapies induce apoptosis to remove the cancer cell by engaging these caspases indirectly. Newer therapeutic applications have been designed, including those that specifically activate individual caspases using gene therapy approaches and small molecules that repress natural inhibitors of caspases already present in the cell. For such approaches to have maximal clinical efficacy, emerging insights into non-apoptotic roles of these caspases need to be considered. This review will discuss the roles of caspases as safeguards against cancer in the context of the advantages and potential limitations of targeting apoptotic caspases for the treatment of cancer.  相似文献   

9.
Apoptosis is mainly brought about by the activation of caspases, a protease family with unique substrate selectivity. In mammals, different complexes like the DISC complex or the apoptosome complexes have been delineated leading to the cleavage and thus activation of the executioner caspases. Although caspase-3 is the main executioner caspase in apoptosis induced by serum starvation in AKR-2B fibroblasts as demonstrated by affinity labeling with YVK(-bio)D.aomk and partial purification of cytosolic extracts by high performance ion exchange chromatography, its activation is apparently caused by a noncanonical pathway: (1) Expression of CrmA, an inhibitor of caspase-8, failed to suppress apoptosis; (2) There was no formation of high molecular weight complexes of Apaf-1 indicative for its activation. Furthermore no cleavage of caspase-9 was observed. But surprisingly, gelfiltration experiments revealed the distribution of caspase-3 and -6 into differently sized high molecular weight complexes during apoptosis. Though the apparent molecular weights of the complexes containing caspase-3 (600 kD for apoptosome and 250 kD for microapoptosome) are in accordance with recently published data, the activity profiles differ strikingly. In AKR-2B cells caspase-3 is mainly recovered as uncomplexed enzyme and in much lower levels in the apoptosomes. Remarkably, the 600 kD and 250 kD complexes containing activated caspase-3 were devoid of Apaf-1 and cytochrome c. In addition a new 450 kD complex containing activated caspase-6 was found that is clearly separated from the caspase-3 containing complexes. Furthermore, we disclose for the first time the activation of caspase-12 in response to serum starvation. Activated caspase-12 is detectable as non-complexed free enzyme in the cytosol.  相似文献   

10.
In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.  相似文献   

11.
Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.Caspases are a family of genes important for maintaining homeostasis through regulating cell death and inflammation. Here we will attempt to summarize what we currently know about how caspases normally work, and what happens when members of this diverse gene family fail to work correctly.Caspases are endoproteases that hydrolyze peptide bonds in a reaction that depends on catalytic cysteine residues in the caspase active site and occurs only after certain aspartic acid residues in the substrate. Although caspase-mediated processing can result in substrate inactivation, it may also generate active signaling molecules that participate in ordered processes such as apoptosis and inflammation. Accordingly, caspases have been broadly classified by their known roles in apoptosis (caspase-3, -6, -7, -8, and -9 in mammals), and in inflammation (caspase-1, -4, -5, -12 in humans and caspase-1, -11, and -12 in mice) (Fig. 1). The functions of caspase-2, -10, and -14 are less easily categorized. Caspases involved in apoptosis have been subclassified by their mechanism of action and are either initiator caspases (caspase-8 and -9) or executioner caspases (caspase-3, -6, and -7).Figure 1.Domain structure of human caspases.Caspases are initially produced as inactive monomeric procaspases that require dimerization and often cleavage for activation. Assembly into dimers is facilitated by various adapter proteins that bind to specific regions in the prodomain of the procaspase. The exact mechanism of assembly depends on the specific adapter involved. Different caspases have different protein–protein interaction domains in their prodomains, allowing them to complex with different adapters. For example, caspase-1, -2, -4, -5, and -9 contain a caspase recruitment domain (CARD), whereas caspase-8 and -10 have a death effector domain (DED) (Taylor et al. 2008).  相似文献   

12.
BACKGROUND: Caspases are a family of cysteine proteases that have important intracellular roles in inflammation and apoptosis. Caspase-8 activates downstream caspases which are unable to carry out autocatalytic processing and activation. Caspase-8 is designated as an initiator caspase and is believed to sit at the apex of the Fas- or TNF-mediated apoptotic cascade. In view of this role, the enzyme is an attractive target for the design of inhibitors aimed at blocking the undesirable cell death associated with a range of degenerative disorders. RESULTS: The structure of recombinant human caspase-8, covalently modified with the inhibitor acetyl-Ile-Glu-Thr-Asp-aldehyde, has been determined by X-ray crystallography to 1.2 A resolution. The asymmetric unit contains the p18-p11 heterodimer; the biologically important molecule contains two dimers. The overall fold is very similar to that of caspase-1 and caspase-3, but significant differences exist in the substrate-binding region. The structure answers questions about the enzyme-inhibitor complex that could not be explained from earlier caspase structures solved at lower resolution. CONCLUSIONS: The catalytic triad in caspase-8 comprises Cys360, His317 and the backbone carbonyl oxygen atom of Arg258, which points towards the Nepsilon atom of His317. The oxygen atom attached to the tetrahedral carbon in the thiohemiacetal group of the inhibitor is hydrogen bonded to Ndelta of His317, and is not in a region characteristic of a classical 'oxyanion hole'. The N-acetyl group of the inhibitor is in the trans configuration. The caspase-8-inhibitor structure provides the basis for understanding structure/function relationships in this important initiator of the proteolytic cascade that leads to programmed cell death.  相似文献   

13.
Initiator caspases in apoptosis signaling pathways   总被引:15,自引:0,他引:15  
Death receptor- or mitochondrion-dependent apoptosis is initiated by the recruitment and activation of apical caspases in the apoptosis signaling pathways. In death receptor-mediated apoptosis, engagement of death receptors leads to the formation of the death-inducing signaling complex (DISC) containing the death receptors, adaptor proteins, caspase-8 and caspase-10. In mitochondrion-dependent apoptosis, release of cytochrome C into the cytosol results in the formation of apoptosome containing cytochrome C, Apaf-1 and caspase-9. Caspase-8, caspase-10 and caspase-9 are believed to be the initiator caspases at the top of the caspase signaling cascade. Recruitment of caspases to DISC and apoptosome leads to their activation by dimer formation. Recent biochemical and structural analyses of components in the DISC and apoptosome shed new lights on their roles in inducing the onset of apoptosis signaling.  相似文献   

14.
Caspase activation during apoptosis occurs in a cascade from the initiator caspase(s) (e.g. caspase-8) to the effector caspases (e.g. caspase-3), which ensures the generation of large amounts of active caspases to dismantle cells. However, the mechanism that safeguards against inadvertent caspase activation is not well understood. Previous studies have suggested that the activation of procaspase-8 is mediated by cross-cleavage of precursor dimers, formed upon apoptosis induction, which are not only enzymatically competent but also highly susceptible to cleavage, and that procaspase-8 activation is a linear process without self-amplification. Effector procaspases constitutively exist as dimers and their activation is started by trans-cleavage by an initiator caspase followed by autocleavage of effector caspases. Here we show that the dimerization of caspase-3 molecules through their protease domains is required for their processing by initiator caspases. The subsequent autoprocessing takes place through cleavage between the dimeric intermediates. Moreover, mature caspase-3 fails to process its own precursor. Thus, despite a marked difference in the generation of active intermediates, the activation of initiator and effector caspases shares the features of interdimer cleavage and lack of self-amplification. These features may be important in preventing accidental cell death.  相似文献   

15.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

16.
The X-linked inhibitor of apoptosis protein (XIAP) uses its second baculovirus IAP repeat domain (BIR2) to inhibit the apoptotic executioner caspase-3 and -7. Structural studies have demonstrated that it is not the BIR2 domain itself but a segment N-terminal to it that directly targets the activity of these caspases. These studies failed to demonstrate a role of the BIR2 domain in inhibition. We used site-directed mutagenesis of BIR2 and its linker to determine the mechanism of executioner caspase inhibition by XIAP. We show that the BIR2 domain contributes substantially to inhibition of executioner caspases. A surface groove on BIR2, which also binds to Smac/DIABLO, interacts with a neoepitope generated at the N-terminus of the caspase small subunit following activation. Therefore, BIR2 uses a two-site interaction mechanism to achieve high specificity and potency for inhibition. Moreover, for caspase-7, the precise location of the activating cleavage is critical for subsequent inhibition. Since apical caspases utilize this cleavage site differently, we predict that the origin of the death stimulus should dictate the efficiency of inhibition by XIAP.  相似文献   

17.
The mitochondrial pathway is critical for the efficient execution of death receptor-initiated apoptosis in certain cell types. Questions remain as to why the mitochondria are required in that scenario. We investigated the molecular events that determined the need for the mitochondria by using an in vivo model of anti-Fas-induced hepatocyte apoptosis. In wild-type mice, Fas stimulation resulted in normal activation of caspase-3, with the generation of the active p19-p12 complex. In bid-deficient mice, caspase-3 activation was arrested after the initial cleavage at Asp(175). This allowed the generation of the p12 small subunit, but the p20 large subunit could not be further processed to the p19 subunit. The p20-p12 complex generated by Fas stimulation in bid-deficient hepatocytes was inactive, arresting the death program. Failure of p20/p12 caspase-3 to mature and to exhibit activity was because of the inhibition by the inhibitor-of-apoptosis proteins (IAPs), such as XIAP, and also to a low caspase-8 activity. This block could be overcome in wild-type mice by two mechanisms. Smac was released from mitochondria early following Fas activation and was competitively bound to the IAPs to reverse their effects. XIAP could also be cleaved, and this occurred later and was likely mediated by enhanced caspase activities. Both mechanisms were dependent on Bid and thus were not operative in bid-deficient hepatocytes. In conclusion, mitochondrial activation by Bid is required for reversing the IAP inhibition through Smac release. It is also required for the alternative activation of caspases through cytochrome c release, as demonstrated previously. Together, these events ensure a successful progression of the death program initiated by the death receptor activation in the hepatocyte.  相似文献   

18.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

19.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

20.
Influenza virus infection induces apoptosis in cultured cells with an augmented expression of Fas (APO-1/CD95). Caspases, a family of cysteine proteases structurally related to interleukin-1-beta-converting enzyme (ICE), play crucial roles in apoptosis induced by various stimuli, including Fas. However, activation of the caspase-cascade seems to be different in various pathways of apoptotic stimuli. We therefore examined the involvement of caspases in influenza virus-induced apoptosis using caspase inhibitors. We found that z-VAD-fmk and z-IETD-fmk effectively inhibited virus-induced apoptosis, whereas Ac-DEVD-CHO and Ac-YVAD-CHO showed partial and little effect on virus-induced cell death, respectively. Consistently, caspase-3-like activity, but not caspase-1-like activity, was increased in the virus-infected cells. The transfection of plasmids encoding viral inhibitors of caspase (v-FLIP or crmA) into HeLa cells inhibited apoptosis by virus infection. The peptide inhibitors of caspases used in this study did not inhibit viral replication. We conclude that influenza virus infection activates some caspases, and that this activation may be downstream of viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号