首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seamless gene engineering using RNA- and DNA-overhang cloning   总被引:2,自引:0,他引:2  
Here we describe two methods for generating DNA fragments with single-stranded overhangs, like those generated by the activity of many restriction enzymes, by simple methods that do not involve DNA digestion. The methods, RNA-overhang cloning (ROC) and DNA-overhang cloning (DOC), generate polymerase chain reaction (PCR) products composed of double-stranded (ds) DNA flanked by single-stranded (ss) RNA or DNA overhangs. The overhangs can be used to recombine DNA fragments at any sequence location, creating "perfect" chimeric genes composed of DNA fragments that have been joined without the insertion, deletion, or alteration of even a single base pair. The ROC method entails using PCR primers that contain regions of RNA sequence that cannot be copied by certain thermostable DNA polymerases. Using such a chimeric primer in PCR would yield a product with a 5' overhang identical to the sequence of the RNA component of the primer, which can be used for directional ligation of the amplified product to other preselected DNA molecules. This method provides complete control over both the length and sequence of the overhangs, and eliminates the need for restriction enzymes as tools for gene engineering.  相似文献   

2.
3.
M M Waye  F Mui  K Hodge  V K Li 《Plasmid》1991,26(1):74-77
A phagemid vector library for cloning DNA with four nucleotide 5' or 3' overhangs has been constructed. This library is based on the pT7T3 vector (Pharmacia) which is a modification of the phagemid pTZ18U vector. We have chosen pT7T3 as the parent vector because it can be used for Sanger's dideoxy sequencing and for the generation of RNA probes with either the T7 or T3 promoter. Each member of the cloning vector series pBM has recognition sites for both of the restriction enzymes BspM1 and BstX1 in addition to the basic multiple cloning sites. BspM1 recognizes the sequence 5'...ACCTGC NNNN/NNNN...3' whereas BstX1 recognizes the sequence 5'...CCAN NNNN/NTGG...3'. Thus these two sites can be overlapped, so that only 256 vectors (instead of 512 vectors) need be constructed to cover all the theoretical possible combinations of sites which give complementary cohesive ends for cloning DNA with four nucleotide 5' or 3' overhangs. This vector library can be used for amplification cloning of DNA in a tandem array by choosing appropriate vectors which have nonpalindromic sequences. We have obtained approximately 200 members of the 256 possible clones and have organized the vectors using a MacIntosh HyperCard program for easy retrieval.  相似文献   

4.
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.  相似文献   

5.
The efficiency of RNA interference (RNAi) delivery to L1 through L3 stage worms of the sheep parasitic nematode Trichostrongylus colubriformis was investigated using several techniques. These were: (i) feeding of Escherichia coli expressing double stranded RNA (dsRNA); (ii) soaking of short interfering (synthetic) RNA oligonucleotides (siRNA) or in vitro transcribed dsRNA molecules; and (iii) electroporation of siRNA or in vitro transcribed dsRNA molecules. Ubiquitin and tropomyosin were used as a target gene because they are well conserved genes whose DNA sequences are available for several nematode parasite species. Ubiquitin siRNA or dsRNA delivered by soaking or electroporation inhibited development in T. colubriformis but with feeding as a delivery method, RNAi of ubiquitin was not successful. Feeding was, however, successful with tropomyosin as a target, suggesting that mode of delivery is an important parameter of RNAi. Electroporation is a particularly efficient means of inducing RNA in nematodes with either short dsRNA oligonucleotides or with long in vitro transcribed dsRNA molecules. These methods permit routine delivery of dsRNA for RNAi in T. colubriformis larval stage parasites and should be applicable to moderate to high-throughput screening.  相似文献   

6.
Bacteriophage phi 6 has a segmented genome consisting of three pieces of double-stranded RNA (dsRNA). The viral procapsid is the structure that packages plus strands, synthesizes the complementary negative strands to form dsRNA, and then transcribes dsRNA to form plus-strand message. The minus-strand synthesis of a particular genomic segment is dependent on prior packaging of the other segments. The 5' end of the plus strand is necessary and sufficient for packaging, while the normal 3' end is necessary for synthesis of the negative strand. We have now investigated the ability of truncated RNA segments which lack the normal 3' end of the molecules to stimulate the synthesis of minus strands of the other segments. Fragments missing the normal 3' ends were able to stimulate the minus-strand synthesis of intact heterologous segments. Minus-strand synthesis of one intact segment could be stimulated by the presence of two truncated nonreplicating segments. The 5' fragments of each single-stranded genomic segment can compete with homologous full-length single-stranded genomic segments in minus-strand synthesis reactions, suggesting that there is a specific binding site in the procapsid for each segment.  相似文献   

7.
Chen JM  Guo LX  Sun CY  Sun YX  Chen JW  Li L  Wang ZL 《Biotechnology letters》2006,28(22):1787-1792
Most RNA positive controls currently used for monitoring the quality of RT-PCR assays have some disadvantages, such as instability, inability to monitor the quality of the relevant primers and/or causing indifferentiable false positives. To avoid these disadvantages, a simple method to prepare stable and differentiable RNA positive controls is now demonstrated with a real-time RT-PCR assay for the detection of Nipah virus (NiV). A DNA sequence which was shorter than its counterpart in the NiV genome and contained the binding sites of the primers of the RT-PCR assay was designed, synthesized and inserted into a vector, and then amplified by PCR with two vector-specific primers both of which contained a T7 promoter at the 5' terminal. The RNA positive control was the dsRNA in vitro transcribed from the PCR amplicons flanked by two T7 promoters. The RNA positive control was stable and able to monitor the quality of the whole concerned RT-PCR assay. False positives caused by contaminations of the RNA positive control or its amplicons could be easily identified because the amplicons of the RNA positive control were obviously shorter than those of real positive samples. Thus, the RNA positive control reported in this study avoided some common disadvantages of current RNA positive controls.  相似文献   

8.
9.
RIG-I recognizes molecular patterns in viral RNA to regulate the induction of type I interferons. The C-terminal domain (CTD) of RIG-I exhibits high affinity for 5' triphosphate (ppp) dsRNA as well as blunt-ended dsRNA. Structures of RIG-I CTD bound to 5'-ppp dsRNA showed that RIG-I recognizes the termini of dsRNA and interacts with the ppp through electrostatic interactions. However, the structural basis for the recognition of non-phosphorylated dsRNA by RIG-I is not fully understood. Here, we show that RIG-I CTD binds blunt-ended dsRNA in a different orientation compared to 5' ppp dsRNA and interacts with both strands of the dsRNA. Overlapping sets of residues are involved in the recognition of blunt-ended dsRNA and 5' ppp dsRNA. Mutations at the RNA-binding surface affect RNA binding and signaling by RIG-I. These results provide the mechanistic basis for how RIG-I recognizes different RNA ligands.  相似文献   

10.
11.
PCR-product directed gene disruption with a marker cassette having short homology regions is often used in Candida albicans. However, it is quite inefficient due to the high frequency of non-homologous recombination at non-targeted loci, which necessitates extensive screening to identify the correct disruptants. Thus, many PCR-based methods to introduce long flanking homology regions have been developed to increase the frequency of integration at the targeted loci. However, these methods are not that amenable for use with the widely employed C. albicans marker cassettes having direct repeats, as these repeats tend to recombine during PCR, resulting in shorter amplified products without the selection marker. To circumvent this limitation, we have developed a dinucleotide-sticky-end-ligation strategy to add one flanking homology region to one side of the selection cassette, and the other flanking homology region to the other side of the selection cassette. This method involves release of the selection cassette from the plasmid by digestion with two different restriction enzymes, followed by partial fill-in, to provide a unique two base overhang at each end of the cassette. The flanking homology regions, corresponding to the gene to be disrupted, are individually PCR-amplified, and treated with T4-DNA Polymerase in the presence of appropriate dNTPs to yield two base-5' overhangs. The primers used for the PCR have additional bases at the 5' ends such that after T4 DNA Polymerase treatment, the two flanks will have distinct overhangs compatible with the overhangs of the partially filled-in selection cassette. The selection cassette and the flanks are then ligated together and directly used to transform C. albicans. We have successfully used this method for disruption of several C. albicans genes. We have also used this method to recreate insertion mutations obtained with transposons to reconfirm the mutant phenotypes. This approach can be extended to other organisms like Schizosaccharomyces pombe which also require long flanking regions of homology for targeted gene disruption.  相似文献   

12.
13.
Development of strategies for conditional RNA interference   总被引:6,自引:0,他引:6  
BACKGROUND: RNA interference (RNAi) represents a powerful tool with which to undertake sequence-dependent suppression of gene expression. Synthesized double-stranded RNA (dsRNA) or dsRNA generated endogenously from plasmid or viral vectors can be used for RNAi. For the latter, polymerase III promoters which drive ubiquitous expression in all tissues have typically been adopted. Given that dsRNA molecules must contain few 5' and 3' over-hanging bases to maintain potency, employing polymerase II promoters to drive tissue-specific expression of RNAi may be problematic due to potential inclusion of nucleotides 5' and 3' of siRNA sequences. METHODS: To circumvent this, polymerase II promoters in combination with cis-acting hammerhead ribozymes and short-hairpin RNA sequences have been explored as a means to generate potent dsRNA molecules in tissues defined by the promoter in use. RESULTS: The novel constructs evaluated in this study produced functional siRNA which suppressed the enhanced green fluorescent protein (eGFP) both in vitro and in vivo (in mice). Additionally, the constructs did not appear to elicit a significant type-1 interferon response compared to traditional H1-transcribed shRNA. CONCLUSIONS: Given the potential 'off-target' effects of dsRNAs, it would be preferable in many cases to limit expression of dsRNA to the tissue of interest and moreover would significantly augment the resolution of RNAi technologies. Notably, the system under evaluation in this study could readily be adapted to achieve this objective.  相似文献   

14.
The role of Dicer's helicase domain is enigmatic, but in?vivo it is required for processing certain endogenous siRNA, but not miRNA. By using Caenorhabditis elegans extracts or purified Drosophila Dicer-2 we compared activities of wild-type enzymes and those containing mutations in the helicase domain. We found the helicase domain was essential for cleaving dsRNA with blunt or 5'-overhanging termini, but not those with 3' overhangs, as found on miRNA precursors. Further, blunt termini, but not 3' overhangs, led to increased siRNAs from internal regions of dsRNA; this activity required ATP and a functional helicase domain. Our data suggest that blunt or 5'-overhanging termini engage Dicer's helicase domain to facilitate accumulation of siRNAs from internal regions of a dsRNA, an activity suited for processing long siRNA precursors of low abundance, but not necessary for the single cleavage required for miRNA processing.  相似文献   

15.
It has been shown by van der Werf et al. (S. van der Werf, J. Bradley, E. Wimmer, F. W. Studier, and J. Dunn, Proc. Natl. Acad. Sci. USA 83:2330-2334, 1986) that in vitro synthesis of poliovirus RNA by T7 RNA polymerase gives rise to infectious RNA molecules; however, these molecules are only 5% as infectious as RNA isolated from virions. A plasmid, T7D-polio, was constructed that allows the in vitro synthesis of full-length RNA molecules with two additional guanine residues at the 5' end. However, T7D-polio differed from the construct of van der Werf et al. in that RNA transcribed from T7D-polio has an authentic 3' end, ending with only a polyadenine nucleotide sequence. Transfection of these RNA molecules into mammalian cells produced wild-type poliovirus with an efficiency similar to that of virion RNA. The use of this vector in the characterization of viral mutants in vivo and in vitro is discussed.  相似文献   

16.
17.
Ren B  Guo Y  Gao F  Zhou P  Wu F  Meng Z  Wei C  Li Y 《Journal of virology》2010,84(24):12914-12923
RNA silencing is a potent mechanism of antiviral defense response in plants and other organisms. For counterdefense, viruses have evolved a variety of suppressors of RNA silencing (VSRs) that can inhibit distinct steps of a silencing pathway. We previously identified Pns10 encoded by Rice dwarf phytoreovirus (RDV) as a VSR, the first of its kind from double-stranded RNA (dsRNA) viruses. In this study we investigated the mechanisms of Pns10 function in suppressing systemic RNA silencing in the widely used Nicotiana benthamiana model plant. We report that Pns10 suppresses local and systemic RNA silencing triggered by sense mRNA, enhances viral replication and/or viral RNA stability in inoculated leaves, accelerates the systemic spread of viral infection, and enables viral invasion of shoot apices. Mechanistically, Pns10 interferes with the perception of silencing signals in recipient tissues, binds double-stranded small interfering RNA (siRNAs) with two-nucleotide 3' overhangs, and causes the downregulated expression of RDR6. These results significantly deepen our mechanistic understanding of the VSR functions encoded by a dsRNA virus and contribute additional evidence that binding siRNAs and interfering with RDR6 expression are broad mechanisms of VSR functions encoded by diverse groups of viruses.  相似文献   

18.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

19.
RNA covalently linked to double-stranded RNA (dsRNA) is preferentially degraded in extracts of interferon-treated HeLa cells [Nilsen, T. W., & Baglioni, C. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2600-2604]. The size of the dsRNA required for this preferential degradation has been determined by annealing poly(I) of known length to the poly(C) tract of encephalomyocarditis virus (EMCV) RNA or by annealing poly(U) to poly(A) of known length of vesicular stomatitis virus mRNA. The dsRNA must be longer than about 60 base pairs to observe the preferential degradation of RNA. Moreover, triple-stranded regions that do not activate synthesis of 2',5'-oligo(A) and ethidium bromide, which intercalates in dsRNA and blocks 2',5'-olido(A) polymerase activation, prevent this degradation. Ethidium also blocks the degradation of the replicative intermediate of EMCV by extracts of interferon-treated cells. These experiments indicate that synthesis of 2',5'-oligo(A) is required for the degradation of RNA linked to dsRNA. The 2',5'-oligo(A)-dependent endonuclease does not cleave single- or double-stranded DNA, nor does it cleave homopolyribonucleotides. The potential role of the 2',5'-oligo(A) polymerase/endonuclease system in the inhibition of viral RNA replication is discussed.  相似文献   

20.
The L double-stranded (ds) RNA component of Saccharomyces cerevisiae may contain up to three dsRNA species, each with a distinct sequence but with identical molecular weights. These dsRNAs have been separated from each other by denaturation and polyacrylamide gel electrophoresis. The 3' terminal sequences of the major species, LA dsRNA, were determined. Secondary structural analysis supported the presence of two stem and loop structures at the 3' terminus of the LA positive strand. In strain T132B NK-3, both the LA and LC species are virion encapsidated. Two distinct classes of virions were purified from this strain, each with a different RNA polymerase activity and with distinct protein components. The heavy virions harbored LA dsRNA, whereas the LC dsRNA species co purified with the light virion peak. Thus, LA and LC dsRNAs, when present in the same cell, may be separately encapsidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号