首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Accumulating evidence suggest that alterations in energy metabolism are among the earliest events that occur in the Alzheimer disease (AD) affected brain. Energy consumption is drastically decreased in the AD-affected regions of cerebral cortex and hippocampus pointing towards compromised mitochondrial function of neurons within specific brain regions. This is accompanied by an elevated production of reactive oxygen species contributing to increased rates of neuronal loss in the AD-affected brain regions. In this review, we will discuss the role of mitochondrial function and dysfunction in AD. We will focus on the consequences of amyloid precursor protein and amyloid-β peptide accumulation in mitochondria and their involvement in AD pathogenesis.  相似文献   

2.
3.
    
Some neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are caused by protein misfolding. In AD, amyloid β‐peptide (Aβ) is thought to be a toxic agent by self‐assembling into a variety of aggregates involving soluble oligomeric intermediates and amyloid fibrils. Here, we have designed several green fluorescent protein (GFP) variants that contain pseudo‐Aβ β‐sheet surfaces and evaluated their abilities to bind to Aβ and inhibit Aβ oligomerization. Two GFP variants P13H and AP93Q bound tightly to Aβ, Kd = 260 nM and Kd = 420 nM, respectively. Moreover, P13H and AP93Q were capable of efficiently suppressing the generation of toxic Aβ oligomers as shown by a cell viability assay. By combining the P13H and AP93Q mutations, a super variant SFAB4 comprising four strands of Aβ‐derived sequences was designed and bound more tightly to Aβ (Kd = 100 nM) than those having only two pseudo‐Aβ strands. The SFAB4 protein preferentially recognized the soluble oligomeric intermediates of Aβ more than both unstructured monomer and mature amyloid fibrils. Thus, the design strategy for embedding pseudo‐Aβ β‐sheet structures onto a protein surface arranged in the β‐barrel structure is useful to construct molecules capable of binding tightly to Aβ and inhibiting its aggregation. This strategy may provide implication for the diagnostic and therapeutic development in the treatment of AD. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
    
The conformational characteristics of protected homo‐oligomeric Boc‐[β3(R)Val]n‐OMe, n = 1, 2, 3, 4, 6, 9, and 12 have been investigated in organic solvents using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) absorption spectroscopy and circular dichroism (CD) methods. The detailed 1H NMR analysis of Boc‐[β3(R)Val]12‐OMe reveals that the peptide aggregates extensively in CDCl3, but is disaggregated in 20%, (v/v) dimethyl sulfoxide (DMSO) in CDCl3 and in CD3OH. Limited assignment of the N‐terminus NH groups, together with solvent dependence of NH chemical shifts and temperature coefficients provides evidence for 14‐helix conformation in the 12‐residue peptide. FTIR analysis in CHCl3 establishes that the onset of folding and aggregation, as evidenced by NH stretching bands at 3375 cm−1 (intramolecular) and 3285 cm−1 (intermolecular), begins at the level of the tetrapeptide. The observed CD bands, 214 nm (negative) and 198 nm (positive), support 14‐helix formation in the 9 and 12 residue sequences. The folding and aggregation tendencies of homo‐oligomeric α‐, β‐, and γ‐ residues is compared in the model peptides Boc‐[ωVal]n‐NHMe, ω = α, β, and γ and n = 1, 2, and 3. Analysis of the FTIR spectra in CHCl3, establish that the tendency to aggregate at the di and tripeptide level follows the order β > α∼γ, while the tendency to fold follows the order γ > β > α.  相似文献   

6.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

7.
    
Understanding the aggregation selectivity of peptide fragments of full‐length proteins in aqueous solutions with ionic liquids (ILs) could facilitate the elucidation of the relationship between the IL‐protein interactions and structural behavior of intrinsically disordered proteins (IDPs) such as amyloid β protein following the addition of ILs. In the present study, we investigate structural changes in peptide fragment 1‐11 (Aβ1‐11) of amyloid β protein in aqueous solutions with two ILs including 1‐butyl‐3‐methylimidazolium thiocyanate ([bmim][SCN]) and ethylammonium nitrate (EAN) using optical spectroscopy. The addition of [bmim][SCN], which exhibits strong protein denaturant ability, induced the formation of an intermolecular β‐sheet structure (aggregation), while the addition of EAN, which has a weaker denaturant ability compared with [bmim][SCN], did not cause aggregation. Since the role of cations is related to the ability to mask the charged residues of Aβ1‐11, the aggregation selectivity of Aβ1‐11 depends on the anionic species and anions with high denaturation ability enhanced aggregation. Our results demonstrated that the structural change in peptide fragment in aqueous IL solutions could be used to evaluate the relationship between the IL‐protein interactions and aggregation selectivity in IDPs in aqueous IL solutions.  相似文献   

8.
    
β‐Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11‐positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild‐type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2‐dependent manner. Wild‐type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1.  相似文献   

9.
    
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
    
Glutamic acid–rich peptides are crucial to a variety of biological processes, including glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often exhibit unusual organization into β2‐type sheets, where bifurcated H bonds formed between glutamic acid side chains and NH in amide bonds on adjacent βstrands play a paramount role for stabilizing the molecular assembly. Herein, we investigate the self‐assembly and supramolecular structure of simplified models consisting of alternating glutamic acid/phenylalanine residues. Small‐angle X‐ray scattering and atomic force microscopy show that the aggregation pathway is characterized by the formation of small oligomers, followed by coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated through fiber X‐ray diffraction, which reveal molecular packing according to cross‐β patterns, where βstrands appear perpendicularly oriented to the long axis of nanofibrils and nanotapes. Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a remarkable decrease of β2‐sheet content, accompanied by growth of standard β‐sheet fractions, indicating a β2‐to‐β1 transition as a consequence of the release of solvent from the interstices of peptide assemblies. Our findings highlight the key role played by water molecules in mediating H‐bond formation in β2‐sheets commonly found in amyloidogenic glutamic acid–rich aggregates.  相似文献   

11.
Oxidative damage is associated with Alzheimer's disease and mild cognitive impairment, but its relationship to the development of neuropathological lesions involving accumulation of amyloid-beta (Abeta) peptides and hyperphosphorylated tau protein remains poorly understood. We show that inducing oxidative stress in primary chick brain neurons by exposure to sublethal doses of H(2)O(2 )increases levels of total secreted endogenous Abeta by 2.4-fold after 20 h. This occurs in the absence of changes to intracellular amyloid precursor protein or tau protein levels, while heat-shock protein 90 is elevated 2.5-fold. These results are consistent with the hypothesis that aging-associated oxidative stress contributes to increasing Abeta generation and up-regulation of molecular chaperones in Alzheimer's disease.  相似文献   

12.
    
High‐throughput screens that dispense with the need for expensive synthetic Aβ peptide would be invaluable for identifying novel anti‐aggregants as potential treatments for Alzheimer's disease. A biosynthetic in vivo approach, using a recombinant fluorescent green fluorescent protein (GFP) reporter for the aggregation state of Aβ in Escherichia coli, has been reported by other workers. Here, inducible Aβ–GFP expression in E. coli was coupled to the concurrent constitutive production of a quasi‐random peptide library to screen for anti‐aggregant activity. To attempt to introduce greater robustness, mCherry was also co‐expressed as an internal fluorescence standard to allow ratiometric comparison between samples. However, fluctuations in mCherry expression levels, as well as a low dynamic range of GFP output between positive and negative anti‐aggregant peptides, highlighted limitations with the approach. Despite this, two novel peptides were identified that showed an equivalent in vitro anti‐aggregant activity to that of epigallocatechin‐3‐gallate. Thus, although biosynthetic in vivo strategies show promise as screens for novel activities, unforeseen problems can arise because of the variability inherent in any biological system. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
    
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β‐amyloid (Aβ21–30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N‐terminal Cys. While Aβ21–30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16–34 led to formation of typical amyloid fibrils. NMR showed no long‐range nuclear overhauser effect (nOes) in Aβ21–30, Aβ16–34, or their variants, however. Serial 1H‐15N‐heteronuclear single quantum coherence spectroscopy, 1H‐1H nuclear overhauser effect spectroscopy, and 1H‐1H total correlational spectroscopy spectra were used to follow aggregation of Aβ16–34 and Cys‐Aβ16–34 at a site‐specific level. The addition of an N‐terminal Cys residue (in Cys‐Aβ16–34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16–34 and Cys‐Aβ16–34, according to which Cys‐Aβ16–34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.  相似文献   

14.
    
We tested directly the differences in the aggregation kinetics of three important β amyloid peptides, the full‐length Aβ1‐42, and the two N‐terminal truncated and pyroglutamil modified Aβpy3‐42 and Aβpy11‐42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Aβpy3‐42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Aβ1‐42, more prone to fibril formation. In addition, Aβpy3‐42 is found here to have an inhibitory effect on Aβ1‐42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of β‐peptides in Alzheimer disease. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 861–873, 2009. This article was originally published online as an accepted preprint. The “Published Online“ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
    
The common neurodegenerative disorder known as Alzheimer’s disease is characterized by cerebral neuritic plaques of amyloid β (Aβ) peptide. Plaque formation is related to the highly aggregative property of this peptide, because it polymerizes to form insoluble plaques or fibrils causing neurotoxicity. Here, we expressed Aβ peptide as a new causing agent to endoplasmic reticulum (ER) stress to study ER stress occurred in plant. When the dimer of Aβ1–42 peptide was expressed in maturing seed under the control of the 2.3‐kb glutelin GluB‐1 promoter containing its signal peptide, a maximum of about 8 μg peptide per grain accumulated and was deposited at the periphery of distorted ER‐derived PB‐I protein bodies. Synthesis of Aβ peptide in the ER lumen severely inhibited the synthesis and deposition of seed storage proteins, resulting in the generation of many small and abnormally appearing PB bodies. This ultrastructural change was accounted for by ER stress leading to the accumulation of aggregated Aβ peptide in the ER lumen and a coordinated increase in ER‐resident molecular chaperones such as BiPs and PDIs in Aβ‐expressing plants. Microarray analysis also confirmed that expression of several BiPs, PDIs and OsbZIP60 containing putative transmembrane domains was affected by the ER stress response. Aβ‐expressing transgenic rice kernels exhibited an opaque and shrunken phenotype. When grain phenotype and expression levels were compared among transgenic rice grains expressing several different recombinant peptides, such detrimental effects on grain phenotype were correlated with the expressed peptide causing ER stress rather than expression levels.  相似文献   

16.
    
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

17.
    
Autosomal‐dominant Alzheimer's disease (ADAD) is a genetic disorder caused by mutations in Amyloid Precursor Protein (APP) or Presenilin (PSEN) genes. Studying the mechanisms underlying these mutations can provide insight into the pathways that lead to AD pathology. The majority of biochemical studies on APP mutations to‐date have focused on comparing mechanisms between mutations at different codons. It has been assumed that amino acid position is a major determinant of protein dysfunction and clinical phenotype. However, the differential effect of mutations at the same codon has not been sufficiently addressed. In the present study we compared the effects of the aggressive ADAD‐associated APP I716F mutation with I716V and I716T on APP processing in human neuroglioma and CHO‐K1 cells. All APP I716 mutations increased the ratio of Aβ42/40 and changed the product line preference of γ‐secretase towards Aβ38 production. In addition, the APP I716F mutation impaired the ε‐cleavage and the fourth cleavage of γ‐secretase and led to abnormal APP β‐CTF accumulation at the plasma membrane. Taken together, these data indicate that APP mutations at the same codon can induce diverse abnormalities in APP processing, some resembling PSEN1 mutations. These differential effects could explain the clinical differences observed among ADAD patients bearing different APP mutations at the same position.

  相似文献   


18.
19.
    
The role of silver ions in various pathologies, as well as their effect on peptide conformation and properties are less understood. Consequently, we synthesized several peptides with various residues in their sequence to investigate silver‐induced conformational changes at various pH values by Circular Dichroism spectroscopy. Uniquely, the glycine‐based, histidine‐containing peptide showed a severe change from a random coil and β‐turn conformation to large α‐helices during silver binding. When comparing the effect of silver ions on the conformation of bradykinin a similar tendency was found. Besides, silver ions reduced the amyloid‐β peptide tendency to aggregation. Our results suggest a specific and protective role for silver ions in brain pathologies, which is related to their high affinity toward physiologically and pharmacologically active peptides. Fourier transform infrared spectroscopy studies as well as the mass spectrometric ones support our conclusions. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
    
Amyloid fibrils are fibrillar deposits of denatured proteins associated with amyloidosis and are formed by a nucleation and growth mechanism. We revisited an alternative and classical view of amyloid fibrillation: amyloid fibrils are crystal‐like precipitates of denatured proteins formed above solubility upon breaking supersaturation. Various additives accelerate and then inhibit amyloid fibrillation in a concentration‐dependent manner, suggesting that the combined effects of stabilizing and destabilizing forces affect fibrillation. Heparin, a glycosaminoglycan and anticoagulant, is an accelerator of fibrillation for various amyloidogenic proteins. By using β2‐microglobulin, a protein responsible for dialysis‐related amyloidosis, we herein examined the effects of various concentrations of heparin on fibrillation at pH 2. In contrast to previous studies that focused on accelerating effects, higher concentrations of heparin inhibited fibrillation, and this was accompanied by amorphous aggregation. The two‐step effects of acceleration and inhibition were similar to those observed for various salts. The results indicate that the anion effects caused by sulfate groups are one of the dominant factors influencing heparin‐dependent fibrillation, although the exact structures of fibrils and amorphous aggregates might differ between those formed by simple salts and matrix‐forming heparin. We propose that a conformational phase diagram, accommodating crystal‐like amyloid fibrils and glass‐like amorphous aggregates, is important for understanding the effects of various additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号