首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one β-chain and seven α-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its α-chains and with protein S through its β-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP α-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the α-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein–protein interactions. Proteins 31:391–405, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The crystal structure of a dimeric 2:2:2 FGF:FGFR:heparin ternary complex at 3 A resolution has been determined. Within each 1:1 FGF:FGFR complex, heparin makes numerous contacts with both FGF and FGFR, thereby augmenting FGF-FGFR binding. Heparin also interacts with FGFR in the adjoining 1:1 FGF:FGFR complex to promote FGFR dimerization. The 6-O-sulfate group of heparin plays a pivotal role in mediating both interactions. The unexpected stoichiometry of heparin binding in the structure led us to propose a revised model for FGFR dimerization. Biochemical data in support of this model are also presented. This model provides a structural basis for FGFR activation by small molecule heparin analogs and may facilitate the design of heparin mimetics capable of modulating FGF signaling.  相似文献   

3.

Background

Although protamine is effective as an antidote of heparin, there is a need to replace protamine due to its side effects. HIP peptide has been reported to neutralize the anticoagulant activity of heparin. The interaction of HIP analog peptides with heparin and heparin-derived oligosaccharides is investigated in this paper.

Methods

Seven analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (HIP) were synthesized, and their interaction with heparin was characterized by heparin affinity chromatography, isothermal titration calorimetry, and NMR.

Results

NMR results indicate the imidazolium groups of the His side chains of histidine-containing Hip analog peptide interact site-specifically with heparin at pH 5.5. Heparin has identical affinities for HIP analog peptides of opposite chirality. Analysis by counterion condensation theory indicates the peptide AC-SRPKAKAKAKAKDQTK-NH2 makes on average ∼ 3 ionic interactions with heparin that result in displacement of ∼ 2 Na+ ions, and ionic interactions account for ∼ 46% of the binding free energy at a Na+ concentration of 0.15 M.

Conclusions

The affinity of heparin for the peptides is strongly dependent on the nature of the cationic side chains and pH. The thermodynamic parameters measured for the interaction of HIP peptide analogs with heparin are strongly dependent on the peptide sequence and pH.

General significance

The information obtained in this research will be of use in the design of new agents for neutralization of the anticoagulant activity of heparin. The site-specific binding of protonated histidine side chains to heparin provides a molecular-level explanation for the pH-dependent binding of β-amyloid peptides by heparin and heparan sulfate proteoglycan and may have implications for amyloid formation.  相似文献   

4.
Data from cell culture and animal models of prion disease support the separate involvement of both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though direct interactions between prion protein and heparin have been recorded, little is known of the structural features implicit in this interaction or of the involvement of copper (II) ions. Using biosensor and enzyme-linked immunosorbent assay methodology we report direct heparin and heparan sulfate-binding activity in recombinant cellular prion protein (PrP(c)). We also demonstrate that the interaction of recombinant PrP(c) with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to competition with dextran sulfate. Competitive inhibition experiments with chemically modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are essential for heparin recognition. We have also identified three regions of the prion protein capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93, and 110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif amino acids 53-93 with heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit the binding of full-length prion molecule to heparin, suggesting a direct role in heparin recognition within the intact protein. The collective data suggest a complex interaction between prion protein and heparin/heparan sulfate and has implications for the cellular and pathological functions of prion proteins.  相似文献   

5.
Bet1p activates the v-SNARE Bos1p.   总被引:9,自引:4,他引:5       下载免费PDF全文
Bet1p is a type II membrane protein that is required for vesicular transport between the endoplasmic reticulum and Golgi complex in the yeast Saccharomyces cerevisiae. A domain of Bet1p, that shows potential to be involved in a coiled-coil interaction, is homologous to a region of the neuronal protein SNAP-25. Here, we used in vitro binding studies to demonstrate that Bet1p plays a role in potentiating soluble NSF attachment protein receptor (SNARE) interactions. Mutational analysis points to the coiled-coil region as necessary for Bet1p function, and circular dichroism experiments support this theory. In vitro binding studies were also used to demonstrate that a direct interaction between Bet1p and Bos1p is required for the efficient interaction of the vesicle SNARE with its SNARE target. Genetic studies suggest that the interactions of Bet1p with Bos1p are regulated by the small GTP-binding protein Ypt1p.  相似文献   

6.
Heparin has been shown to accelerate the inactivation of alpha-thrombin by antithrombin III (AT) by promoting the initial encounter of proteinase and inhibitor in a ternary thrombin-AT-heparin complex. The aim of the present work was to evaluate the relative contributions of an AT conformational change induced by heparin and of a thrombin-heparin interaction to the promotion by heparin of the thrombin-AT interaction in this ternary complex. This was achieved by comparing the ionic and nonionic contributions to the binary and ternary complex interactions involved in ternary complex assembly at pH 7.4, 25 degrees C, and 0.1-0.35 M NaCl. Equilibrium binding and kinetic studies of the binary complex interactions as a function of salt concentration indicated a similar large ionic component for thrombin-heparin and AT-heparin interactions, but a predominantly nonionic contribution to the thrombin-AT interaction. Stopped-flow kinetic studies of ternary complex formation under conditions where heparin was always saturated with AT demonstrated that the ternary complex was assembled primarily from free thrombin and AT-heparin binary complex at all salt concentrations. Moreover, the ternary complex interaction of thrombin with AT bound to heparin exhibited a substantial ionic component similar to that of the thrombin-heparin binary complex interaction. Comparison of the ionic and nonionic components of thrombin binary and ternary complex interactions indicated that: 1) additive contributions of ionic thrombin-heparin and nonionic thrombin-AT binary complex interactions completely accounted for the binding energy of the thrombin ternary complex interaction, and 2) the heparin-induced AT conformational change made a relatively insignificant contribution to this binding energy. The results thus suggest that heparin promotes the encounter of thrombin and AT primarily by approximating the proteinase and inhibitor on the polysaccharide surface. Evidence was further obtained for alternative modes of thrombin binding to the AT-heparin complex, either with or without the active site of the enzyme complexed with AT. This finding is consistent with the ternary complex encounter of thrombin and AT being mediated by thrombin binding to nonspecific heparin sites, followed by diffusion along the heparin surface to a unique site adjacent to the bound inhibitor.  相似文献   

7.
Wang J  Rabenstein DL 《Biochemistry》2006,45(51):15740-15747
Two synthetic analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (Ac-SRGKAKVKAKVKDQTK-NH2) and the all-d-amino acid version of the same peptide (l-HIPAP and d-HIPAP, respectively) were synthesized, and their efficacy as agents for neutralization of the anticoagulant activity of heparin was assayed. The two analogue peptides were found to be equally effective for neutralization of the anticoagulant activity of heparin, as measured by restoration of the activity of serine protease factor Xa by the Coatest heparin method. The finding that l-HIPAP and d-HIPAP are equally effective suggests that d-amino acid peptides show promise as proteolytically stable therapeutic agents for neutralization of the anticoagulant activity of heparin. The interaction of l-HIPAP and d-HIPAP with heparin was characterized by 1H NMR, isothermal titration calorimetry (ITC), and heparin affinity chromatography. The two peptides were found to interact identically with heparin. Analysis of the dependence of heparin-peptide binding constants on Na+ concentration by counterion condensation theory indicates that, on average, 2.35 Na+ ions are displaced from heparin per peptide molecule bound and one peptide molecule binds per hexasaccharide segment of heparin. The analysis also indicates that both ionic and nonionic interactions contribute to the binding constant, with the ionic contribution decreasing as the Na+ concentration increases.  相似文献   

8.
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-Å crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled ∼ 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.  相似文献   

9.
Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held that a protein's ligand specificity is determined primarily by its three‐dimensional structure, the general principles by which structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of protein?ligand complexes with associated binding‐affinity measurements to quantitatively characterize how combinations of atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact with other proteins. Although protein‐small molecule and protein‐DNA/RNA binding affinities can be accurately predicted from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular combinations of atomic interactions required to predict binding affinity differed between small‐molecule and DNA/RNA data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types. In contrast to what we observed for small‐molecule and DNA/RNA interactions, no statistical models were capable of predicting protein?protein affinity with >60% correlation. We demonstrate the potential usefulness of protein‐DNA/RNA binding prediction as a possible tool for high‐throughput virtual screening to guide laboratory investigations, suggesting that quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally advancing our understanding of how molecular structure translates into function. Proteins 2015; 83:2100–2114. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

10.
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.  相似文献   

11.
The discovery of small-molecule drugs aimed at disrupting protein-protein associations is expected to lead to promising therapeutic strategies. The small molecule binds to the target protein thus replacing its natural protein partner. Noteworthy, structural analysis of complexes between successful disruptive small molecules and their target proteins has suggested the possibility that such ligands might somehow mimic the binding behavior of the protein they replace. In these cases, the molecules show a spatial and "chemical" (i.e., hydrophobicity) similarity with the residues of the partner protein involved in the protein-protein complex interface. However, other disruptive small molecules do not seem to show such spatial and chemical correspondence with the replaced protein. In turn, recent progress in the understanding of protein-protein interactions and binding hot spots has revealed the main role of intermolecular wrapping interactions: three-body cooperative correlations in which nonpolar groups in the partner protein promote dehydration of a two-body electrostatic interaction of the other protein. Hence, in the present work, we study some successful complexes between already discovered small disruptive drug-like molecules and their target proteins already reported in the literature and we compare them with the complexes between such proteins and their natural protein partners. Our results show that the small molecules do in fact mimic to a great extent the wrapping behavior of the protein they replace. Thus, by revealing the replacement the small molecule performs of relevant wrapping interactions, we convey precise physical meaning to the mimicking concept, a knowledge that might be exploited in future drug-design endeavors.  相似文献   

12.
Hoke DE  LaBrenz SR  Höök M  Carson DD 《Biochemistry》2000,39(51):15686-15694
Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is thought to be involved in the promotion of cell adhesion, the promotion of cell growth in the cancerous state, and the modulation of blood coagulation. These activities are consistent with the proposed function of HIP/L29 as a heparin/heparan sulfate (Hp/HS) binding growth factor that has a preference for anticoagulantly active Hp/HS. Previous studies showed that a peptide derived from the C terminus of human HIP/L29 (HIP peptide-1) can selectively bind anticoagulant Hp and support cell adhesion. However, a murine ortholog does not have an identical HIP peptide-1 sequence, yet still retains the ability to bind Hp, suggesting that there may be additional Hp/HS binding sites outside of the HIP peptide-1 domain. To test this hypothesis, a systematic study of the domains within human and murine HIP/L29 responsible for Hp/HS binding activity was undertaken. Using deletion mutants, proteolytic fragments, and protease protection of HIP/L29 by Hp, we demonstrate that multiple binding domains contribute to the overall Hp/HS binding activity of HIP/L29 proteins. Furthermore, a conformational change is induced in human HIP/L29 upon Hp binding as detected by circular dichroism spectroscopy. These studies demonstrate the multiplicity of Hp/HS binding sequences within human and murine HIP/L29.  相似文献   

13.
We had previously shown that the expression of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) was upregulated in colon cancer tissues. The present study investigated the role of HIP/RPL29 in differentiation in colon cancer cells. Inducing cellular differentiation in HT-29 cells by both sodium butyrate and glucose deprivation resulted in a significant downregulation of HIP/RPL29 expression. The beta-catenin/Tcf-4 pathway is the most important pathway controlling the switch between cellular differentiation and proliferation in intestinal epithelial cells. Inducing differentiation by dominant-negative inhibition of the beta-catenin/Tcf-4 complexes in LS174T cells also resulted in downregulation of HIP/RPL29. To determine whether a lower expression of HIP/RPL29 could induce differentiation in cancer cells, small interfering RNA (siRNA) targeting HIP/RPL29 was transfected into LS174T cells. The resultant knockdown of HIP/RPL29 expression induced cellular differentiation, as shown by the increased expression of two known markers of differentiation in LS174T cells, galectin-4 and mucin-2. In addition, the differentiation process induced by repression of HIP/RPL29 expression was accompanied by the upregulation of p21 and p53. In conclusion, HIP/RPL29 plays a role in the cellular differentiation process in colon cancer cells. The differentiation process is at least partially mediated by the upregulation of p21 and p53 pathways.  相似文献   

14.
An essential protein for bacterial growth, GTPase‐Obg (Obg), is known to play an unknown but crucial role in stress response as its expression increases in Mycobacterium under stress conditions. It is well reported that Obg interacts with anti‐sigma‐F factor Usfx; however, a detailed analysis and structural characterization of their physical interaction remain undone. In view of above‐mentioned points, this study was conceptualized for performing binding analysis and structural characterization of Obg‐Usfx interaction. The binding studies were performed by surface plasmon resonance, while in silico docking analysis was done to identify crucial residues responsible for Obg‐Usfx interaction. Surface plasmon resonance results clearly suggest that N‐terminal and G domains of Obg mainly contribute to Usfx binding. Also, binding constants display strong affinity that was further evident by intermolecular hydrogen bonds and hydrophobic interactions in the predicted complex. Strong interaction between Obg and Usfx supports the view that Obg plays an important role in stress response, essentially required for Mycobacterium survival. As concluded by various studies that Obg is crucial for Mycobacterium survival under stress, this structural information may help us in designing novel and potential inhibitors against resistant Mycobacterium strains.  相似文献   

15.
Transglutaminase 2 (TG2) is an autoantigen in celiac disease (CD) and it has multiple biologic functions including involvement in cell adhesion through interactions with integrins, fibronectin (FN), and heparan sulfate proteoglycans. We aimed to delineate the heparin‐binding regions of human TG2 by studying binding kinetics of the predicted heparin‐binding peptides using surface plasmon resonance method. In addition, we characterized immunogenicity of the TG2 peptides and their effect on cell adhesion. The high‐affinity binding of human TG2 to the immobilized heparin was observed, and two TG2 peptides, P1 (amino acids 202–215) and P2 (261–274), were found to bind heparin. The amino acid sequences corresponding to the heparin‐binding peptides were located close to each other on the surface of the TG2 molecule as part of the α‐helical structures. The heparin‐binding peptides displayed increased immunoreactivity against serum IgA of CD patients compared with other TG2 peptides. The cell adhesion reducing effect of the peptide P2 was revealed in Caco‐2 intestinal epithelial cell attachment to the FN and FN‐TG2 coated surfaces. We propose that TG2 amino acid sequences 202–215 and 261–274 could be involved in binding of TG2 to cell surface heparan sulfates. High immunoreactivity of the corresponding heparin‐binding peptides of TG2 with CD patient's IgA supports the previously described role of anti‐TG2 autoantibodies interfering with this interaction. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
BACKGROUND: Annexin V, an abundant anticoagulant protein, has been proposed to exert its effects by self-assembling into highly ordered arrays on phospholipid membranes to form a protective anti-thrombotic shield at the cell surface. The protein exhibits very high-affinity calcium-dependent interactions with acidic phospholipid membranes, as well as specific binding to glycosaminoglycans (GAGs) such as heparin and heparan sulfate, a major component of cell surface proteoglycans. At present, there is no structural information to elucidate this interaction or the role it may play in annexin V function at the cell surface. RESULTS: We report the 1.9 A crystal structure of annexin V in complex with heparin-derived tetrasaccharides. This structure represents the first of a heparin oligosaccharide binding to a protein where calcium ions are essential for the interaction. Two distinct GAG binding sites are situated on opposite protein surfaces. Basic residues at each site were identified from the structure and site-directed mutants were prepared. The heparin binding properties of these mutants were measured by surface plasmon resonance. The results confirm the roles of these mutated residues in heparin binding, and the kinetic and thermodynamic data define the functionally distinct character of each distal binding surface. CONCLUSION: The annexin V molecule, as it self-assembles into an organized array on the membrane surface, can bind the heparan sulfate components of cell surface proteoglycans. A novel model is presented in which proteoglycan heparan sulfate could assist in the localization of annexin V to the cell surface membrane and/or stabilization of the entire molecular assembly to promote anticoagulation.  相似文献   

17.
Heparin and related heparan sulfate interact with a number of cytokines and growth factors, thereby playing an essential role in many physiological and pathophysiological processes by involving both signal transduction and the regulation of the tissue distribution of cytokines/growth factors. Follistatin (FS) is an autocrine protein with a heparin-binding motif that serves to regulate the cell proliferative activity of the paracrine hormone, and member of the TGF-β family, activin A (ActA). Follistatin is currently under investigation as an antagonist of another TGF-β family member, myostatin (Mstn), for the promotion of muscle growth in diseases associated with muscle atrophy. In this study, we employ surface plasmon resonance (SPR) spectroscopy to dissect the binding interactions between the heparin polysaccharide and both free follistatin (FS288) and its complexes (FS288-ActA and FS288-Mstn). FS288 complexes show much higher heparin binding affinity than FS288 alone. SPR solution competition studies using heparin oligosaccharides showed that the binding of FS288 and its complex to heparin is dependent on chain length. Full chain heparin or large oligosaccharides, having 18-20 sugar residues, show the highest binding activity for FS288 and the FS288-ActA complex, whereas smaller heparin molecules could interact with the FS288-Mstn complex. These interactions were also analyzed in normal physiological buffers and at different salt concentrations and pH values. Unbound follistatin was much more sensitive to all salt concentrations of >150 mM. The binding of heparin to the FS288-ActA complex was disrupted at 500 mM salt, whereas it was actually strengthened for the FS288-Mstn complex. At acidic pH values, binding of heparin to FS288 and the FS288-ActA complex was enhanced. While slightly acidic pH values (pH 6.2 and 5.2) enhanced the binding of the FS288-Mstn complex to heparin, at pH 4 heparin binding was inhibited. Overall, these studies demonstrate that binding of a specific ligand to FS288 differentially regulates its affinity and behavior for heparin molecules.  相似文献   

18.
The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazole‐propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1‐GluA2 protein–protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1‐GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure‐aided drug design but were unsuccessful in producing a co‐crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co‐crystal structure of the PDZ domain of PICK1 bound to BIO124.  相似文献   

19.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号