首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The innervation of the musculature of the tongue and the hyobranchial apparatus of caecilians has long been assumed to be simple and to exhibit little interspecific variation. A study of 14 genera representing all six families of caecilians demonstrates that general patterns of innervation by the trigeminal, facial, glossopharyngeal, and vagus nerves are similar across taxa but that the composition of the "hypoglossal" nerve is highly variable. Probably in all caecilians, spinal nerves 1 and 2 contribute to the hypoglossal. In addition, in certain taxa, an "occipital," the vagus, and/or spinal 3 appear to contribute fibers to the composition of the hypoglossal nerve. These patterns, the lengths of fusion of the contributing elements, and the branching patterns of the hypoglossal are assessed according to the currently accepted hypothesis of phylogenetic relationships of caecilians, and of amphibians. An hypothesis is proposed that limblessness and a simple tongue, with concomitant reduced complexity of innervation of muscles associated with limbs and the tongue, has released a constraint on pattern of innervation. As a consequence, a greater diversity and, in several taxa, greater complexity of neuroanatomical associations of nerve roots to form the hypoglossal are expressed.  相似文献   

2.
The origin and evolution of the vertebrate skull have been topics of intense study for more than two centuries. Whereas early theories of skull origin, such as the influential vertebral theory, have been largely refuted with respect to the anterior (pre‐otic) region of the skull, the posterior (post‐otic) region is known to be derived from the anteriormost paraxial segments, i.e. the somites. Here we review the morphology and development of the occiput in both living and extinct tetrapods, taking into account revised knowledge of skull development by augmenting historical accounts with recent data. When occipital composition is evaluated relative to its position along the neural axis, and specifically to the hypoglossal nerve complex, much of the apparent interspecific variation in the location of the skull–neck boundary stabilizes in a phylogenetically informative way. Based on this criterion, three distinct conditions are identified in (i) frogs, (ii) salamanders and caecilians, and (iii) amniotes. The position of the posteriormost occipital segment relative to the hypoglossal nerve is key to understanding the evolution of the posterior limit of the skull. By using cranial foramina as osteological proxies of the hypoglossal nerve, a survey of fossil taxa reveals the amniote condition to be present at the base of Tetrapoda. This result challenges traditional theories of cranial evolution, which posit translocation of the occiput to a more posterior location in amniotes relative to lissamphibians (frogs, salamanders, caecilians), and instead supports the largely overlooked hypothesis that the reduced occiput in lissamphibians is secondarily derived. Recent advances in our understanding of the genetic basis of axial patterning and its regulation in amniotes support the hypothesis that the lissamphibian occipital form may have arisen as the product of a homeotic shift in segment fate from an amniote‐like condition.  相似文献   

3.
The relative size of the hypoglossal canal has been proposed as a useful diagnostic tool for the identification of human-like speech capabilities in the hominid fossil record. Relatively large hypoglossal canals (standardized to oral cavity size) were observed in humans and assumed to correspond to relatively large hypoglossal nerves, the cranial nerve that controls motor function of the tongue. It was suggested that the human pattern of tongue motor innervation and associated speech potential are very different from those of African apes and australopithecines; the modern human condition apparently appeared by the time of Middle Pleistocene Homo. A broader interspecific analysis of hypoglossal canal size in primates conducted in 1999 has rejected this diagnostic and inferences based upon it. In an attempt to resolve these differences of opinion, which we believe are based in part on biased size-adjustments and/or unwarranted assumptions, a new data set was collected and analyzed from 298 extant hominoid skulls, including orangutans, gorillas, chimpanzees, bonobos, siamang, gibbons, and modern humans. Data on the absolute size of the hypoglossal nerve itself were also gathered from a small sample of humans and chimpanzee cadavers. A scale-free index of relative hypoglossal canal size (RHCS) was computed as 100 x (hypoglossal canal area(0.5)/oral cavity volume(0.333)). No significant sexual dimorphism in RHCS was discovered in any species of living hominoid, but there are significant interspecific differences in both absolute and relative sizes of the hypoglossal canal. In absolute terms, humans possess significantly larger canals than any other species except gorillas, but there is considerable overlap with chimpanzees. Humans are also characterized by large values of RHCS, but gibbons possess an even larger average mean for this index; siamang and bonobos overlap appreciably with humans in RHCS. The value of RHCS in Australopithecus afarensis is well within both human and gibbon ranges, as are the indices computed for selected representatives of fossil Homo. Furthermore, the size of the hypoglossal nerve itself, expressed as the mass of nerve per millimeter of length, does not distinguish chimpanzees from modern humans. We conclude, therefore, that the relative size of the hypoglossal canal is neither a reliable nor sufficient predictor of human-like speech capabilities, and paleoanthropology still lacks a quantifiable, morphological diagnostic for when this capability finally emerged in the human career.  相似文献   

4.
This study is a continuation of previous work searching for possible anatomic reasons to explain variable and usually unpredictable postoperative pain and dysfunction after the same nerve losses with similar neck dissection operations. The study consisted of dissections of 19 deceased unpreserved elderly subjects arterially injected with dyed latex. Of the 19 subjects, 14 had brain stem and cervical spinal cord dissections, and all had neck dissections. The findings suggested two possible anatomic reasons for the pain and dysfunction: (i) The intracranial anatomy of the lower four cranial nerves, the glossopharyngeal (IX), the vagus (X), the spinal accessory (XI), and the hypoglossal (XII), was just as variable as the previously reported peripheral spinal accessory nerve plexus; and (ii) Both the intracranial and neck dissections indicated that the blood supply to the lower four cranial and cervical nerves, particularly to the brachial plexus, could be impaired by atherosclerosis and/or neuroforaminal impingement or operative loss. This loss of blood supply theoretically could result in ischemia as another possible cause of postoperative pain and dysfunction. It is concluded that because of the potential importance of each nerve and vessel, often unknown at operation, it is very important to spare as many of them as possible to avoid subsequent painful impairment.  相似文献   

5.
This study compared AR proteins in four cranial nerve motor nuclei among male and female rats that were intact, gonadectomized, or gonadectomized and given TP by immunohistochemistry. AR-immunoreactive (ir) neurons were found, in descending order of abundance, in the nucleus ambiguus, hypoglossal nucleus, and the facial and trigeminal motor nuclei of both males and females of intact and gonadectomized plus TP rats. Virtually every neuron of the nucleus ambiguus was AR-ir. In contrast, AR-ir neurons were either restricted to a specific area of the hypoglossal nucleus, or randomly distributed in the facial and trigeminal motor nuclei. The predominant AR-ir site shifted from cell nuclei to the cytoplasm, depending upon the presence or absence of ligand. Sex differences in the amount and staining intensity of AR-ir neurons were discernable in all four motor nuclei of intact rats, and these differences were maintained in gonadectomized plus TP rats, with the exception of the nucleus ambiguus. The immunostaining results were complemented by results from AR binding studies. Cytosolic AR binding values for the hypoglossal and facial motor nuclei of females were only approximately 50% of those of males despite the absence of a sex difference in neuron number. These results indicate that intrinsic sex differences in AR levels and androgenic regulation of AR exist in cranial nerve motor nuclei, and that there are differences in the abundance and distribution pattern of AR responsive neurons in cranial nerve motor nuclei. These results are consistent with the idea that sex differences in AR could account for sex differences observed in nerve regeneration and neuron loss following cranial nerve injury.  相似文献   

6.
The innervation pattern in the buffalo testis was determined by using histochemical and immunohistochemical methods. Nerves were concentrated in the tunica albuginea and septula testis, and did not show an uniform distribution. The tunica albuginea at the lateral and medial sides and at the free border of the testis is most densely innervated than at the epididymal border. At the cranial pole thick nerve bundles were observed between albugineal vessels and muscle bundles. Rare parenchymal nerves were found in perivascular position between seminiferous tubules and their occurrence is confined to lobules at the cranial and caudal testicular poles. An intense NPY immunoreactivity occurred in nerve bundles and in solitary varicose fibres. Nerves were concentrated in the tunica albuginea at the lateral and medial side and at the free border of the testis, and in the lobules at the cranial and caudal testicular poles. Sub P immunoreactivity was occasionally detected in some thicker nerve bundles and solitary fibers, in the tunica albuginea and in the wall of blood vessels, showing a similar distribution but less intensity and density than NPY immunoreactivity. TH immunoreactivity stained nerve fibers in the buffalo testis with a distribution pattern similar to that obtained with general neuronal markers. The histochemical reaction for AchE was negative, so cholinergic fibers cannot be detected in the buffalo testis. The histochemical NADPHd reaction stained rare nitrergic nerve bundles and solitary fibers. The majority of NADPHd activity was confined to the vascular endothelium, and rarely to the interstitial Leydig cells, whereas the Sertoli and germ cells did not show any reaction.  相似文献   

7.
Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon–axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A–Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1−/− and Npn-1Sema mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon–Schwann cell interactions.  相似文献   

8.
The afferent and efferent components of the facial nerve were traced within the brain stem of Rana catesbeiana, using three different neuroanatomical techniques. Primary afferent fibers could be traced to the spinal tract of trigeminal nerve and to fasciculus solitarius as far caudally as the first or second spinal segment, using silver degeneration methods. Cobalt filling of of the entire nerve showed the same distribution of afferent fibers, as well as the filling of the cells within the mesencephalic nucleus of trigeminal, indicating the origin of a proprioceptive component of the facial nerve. Cobalt iontophoresis and horseradish perioxidase experiments showed that the motor nucleus of the facial nerve was located just ventral to the fourth ventricle, and caudal to the motor nucleus of trigeminal. The distribution of afferent fibers to fasciculus solitarius and the spinal tract of trigeminal is similar in some respects to the distribution of afferent fibers from the trigeminal and vagal nerves in the bullfrog. The afferent fibers from the three cranial nerves are found as far caudally in the brain stem as the second spinal segment.  相似文献   

9.
Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.  相似文献   

10.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

11.
Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based upon variation in the extent of PSP between taxa with differing ecologies.  相似文献   

12.
Location within the brain of HP-labeled neurons (origins of projections to the lateral vestibular nucleus) was investigated by iontophoretic injection of this enzyme. Bilateral projections to the following midbrain structures were revealed: the field of Forel, interstitial nuclei of Cajal, oculomotor nerve nuclei, and the red nucleus — to all parts of the lateral vestibular nucleus. Bilateral projections were also shown from more caudally located structures, viz. the superior, medial and inferior (descending) vestibular nuclei, Y groups of the vestibular nuclear complex, facial nucleus and hypoglossi, nucleus prepositus nervi hypoglossi and caudal nuclei of the trigeminal tract; ipsilateral projections from crus IIa of lobulus ansiformus of the cerebellar hemisphere; contralateral projections from the bulbar lateral reticular nucleus and Deiter's nucleus. A tonic organization pattern of afferent inputs from a number of brainstem formations to the dorsal and ventral lateral vestibular nucleus is revealed and trajectories of HP-labeled fiber systems projecting to Deiter's nucleus described.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 494–503, July–August, 1988.  相似文献   

13.
The neurons of origin of the right vagus and its components in both the monkey (Macaca fascicularis) and albino rats were localized by the retrograde transport of horseradish peroxidase (HRP) applied to the stomach wall, the vagal trunk and its recurrent laryngeal branch. An attempt was also made to localize the neurons forming the superior laryngeal nerve and those supplying the thoracic organs by a combination of operative procedures. The results showed that the stomach was innervated by neurons distributed throughout the entire rostrocaudal extent of the dorsal motor nucleus (DMN) on both sides of the brain stem. Neurons scattered throughout the entire extent of the DMN and nucleus ambiguus (NA) supplied the thoracic viscera. There did not appear to be any topographic arrangement in the DMN neurons supplying the abdominal and thoracic viscera as reported by other workers, and there was no clear evidence of crossing of vagal fibers in the monkey brain stem, though such crossing was seen in the rat brain stem. Both the superior and inferior ganglia of the vagus nerve were labeled following application of HRP to the vagal trunk. Neurons in the caudal part of the NA gave rise to fibers in the ipsilateral recurrent laryngeal nerve, at least on the right side. The neurons giving rise to the superior laryngeal nerve could not be delineated in this study. In all the experimental procedures described, the hypoglossal nucleus was labeled only after applying HRP to the hypoglossal nerve.  相似文献   

14.
Examination of the vertebral columns of representatives of all families of salamanders revealed that, in contrast to the condition found in most other vertebrates, salamander spinal nerves often pass through foramina in the vertebrae. Two kinds of spinal nerve foramina were found: those in the anterior halves of vertebrae, and those in the posterior halves. In addition, many salamanders retain intervertebral nerves. However, within each family or, in a few cases, subfamily there is a characteristic pattern of spinal nerve-vertebral relationships. The first spinal nerve of all salamanders exits through a foramen in the anterior half of the atlas. All more posterior nerves are intervertebral in the families Cryptobranchidae, Hynobiidae and Proteidae. The posterior caudal nerves exit through the posterior halves of the caudal vertebrae in the family Amphiumidae, while in the subfamilies Dicamptodontinae and Rhyacotritoninae all post-sacral nerves exit through the posterior halves of the vertebrae. All but the first three nerves exit through posterior foramina in the family Plethodontidae and the subfamily Ambystomatinae, while all but the first two nerves pass through posterior foramina in the families Salamandridae and Sirenidae. Several fossil salamanders were also examined. These showed that the amphiumid and dicamptodontine-rhyacotritonine nerve patterns had evolved by the Late Cretaceous, and the sirenid pattern had probably evolved by that time. Other Cretaceous genera associated with the Ambystomatoidea still possessed the primitive intervertebral pattern. Using spinal nerve patterns and several other previously described morphological characters, a new hypothesis of the phylogeny of recent and fossil salamanders is presented and compared to earlier proposed phylogenies of the group. A new classification of salamander families is presented.  相似文献   

15.
Summary The distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-IR) neurons in the lower medulla oblongata and the spinal cord has been analyzed in guinea pigs. This study includes results obtained by colchicine treatment and transection experiments. In the spinal cord, numerous VIP-IR varicosities were observed in the substantia gelatinosa of the columna dorsalis; some were also found in the substantia intermedia and the columna anterior. The spinal VIP-IR nerve fibers were mainly of intraspinal origin and oriented segmentally. VIP-IR nuclei in the spinal cord extended dorsally into corresponding regions of the caudal medulla oblongata, namely from the substantia intermedia medialis and lateralis into the vagus-solitarius complex and from the nucleus spinalis lateralis into the area of the nucleus reticularis lateralis. Additional VIP-IR perikarya were observed in the pars caudalis of the nucleus spinalis nervi trigemini. The VIP-IR nuclei within the caudal medulla oblongata probably form a continuous system with those localized within the spinal cord. They may be involved functionally in the modulation of cardiovascular and respiratory regulation in the guinea pig.Supported by the DFG, Carvas SFB 90  相似文献   

16.
The developing nervous system is particularly vulnerable to vitamin A deficiency. Retinoid has been proposed to be a posteriorizing factor during hindbrain development, although direct evidence in the mammalian embryo is lacking. In the present study, pregnant vitamin A-deficient (VAD) rats were fed purified diets containing varying levels of all-trans-retinoic acid (atRA; 0, 0.5, 1.5, 6, 12, 25, 50, 125, or 250 microg/g diet) or were supplemented with retinol. Hindbrain development was studied from embryonic day 10 to 12.5 ( approximately 6 to 40 somites). Normal morphogenesis was observed in all embryos from groups fed 250 microg atRA/g diet or retinol. The most caudal region of the hindbrain was the most sensitive to retinoid insufficiency, as evidenced by a loss of the hypoglossal nerve (cranial nerve XII) in embryos from the 125 microg atRA/g diet group. Further reduction of atRA to 50 microg/g diet led to the loss of cranial nerves IX, X, XI, and XII and associated sensory ganglia IX and X in all embryos as well as the loss of hindbrain segmentation caudal to the rhombomere (r) 3/4 border in a subset of embryos. Dysmorphic orthotopic otic vesicles or immature otic-like vesicles in both orthotopic and caudally ectopic locations were also observed. As the level of atRA was reduced, a loss of caudal hindbrain segmentation was observed in all embryos and the incidence of otic vesicle abnormalities increased. Perturbations in hindbrain segmentation, cranial nerve formation, and otic vesicle development were associated with abnormal patterning of the posterior hindbrain. Embryos from VAD dams fed between 0.5 and 50 microg atRA/g diet exhibited Hoxb-1 protein expression along the entire neural tube caudal to the r3/r4 border at a time when it should be restricted to r4. Krox-20 protein expression was expanded in r3 but absent or reduced in presumptive r5. Hoxd-4 mRNA expression was absent in the posterior hindbrain, and the rostral limit of Hoxb-5 protein expression in the neural tube was anteriorized, suggesting that the most posterior hindbrain region (r7/r8) had been deleted and/or improperly patterned. Thus, when limiting amounts of atRA are provided to VAD dams, the caudal portion of the hindbrain is shortened and possesses r4/r5-like characteristics, with this region finally exhibiting r4-like gene expression when retinoid is restricted even more severely. Thus, regions of the anterior hindbrain (i.e., r3 and r4) appear to be greatly expanded, whereas the posterior hindbrain (r5-r8) is reduced or absent. This work shows that retinoid plays a critical role in patterning, segmentation, and neurogenesis of the caudal hindbrain and serves as an essential posteriorizing signal for this region of the central nervous system in the mammal.  相似文献   

17.
Neuronal populations in the brainstem and spinal cord — the sources of fiber pathways to the facial nucleus — were investigated in adult cats by microiontophoretically injecting horseradish peroxidase into restricted areas of the facial nucleus. Projections were identified from thenucleus nervi hypoglossi, nucleus praepositus hypoglossi, nucleus raphe pallidus, nucleus intercalatus, medial nucleus of the solitary tract, dorsal motor nucleus of the vagus, neurons of genu of the facial nerve, ipsilateral red nucleus, and reticular formation of the midbrain to the facial nucleus. Projections from a number of other brain structures to the facial nucleus also received confirmation. A topographic map was drawn up, showing how brainstem and spinal cord afferents are distributed in the facial nucleus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 35–45, January–February, 1986.  相似文献   

18.
In all higher vertebrate embryos the sensory ganglia of the trunk develop adjacent to the neural tube, in the cranial halves of the somite-derived sclerotomes. It has been known for many years that ganglia do not develop in the most cranial (occipital) sclerotomes, caudal to the first somite. Here we have investigated whether this is due to craniocaudal variation in the neural tube or crest, or to an unusual property of the sclerotomes at occipital levels. Using the monoclonal antibody HNK-1 as a marker for neural crest cells in the chick embryo, we find that the crest does enter the cranial halves of the occipital sclerotomes. Furthermore, staining with zinc iodide/osmium tetroxide shows that some of these crest-derived cells sprout axons within these sclerotomes. By stage 23, however, no dorsal root ganglia are present within the five occipital sclerotomes, as assessed both by haematoxylin/eosin and zinc iodide/osmium tetroxide staining. Moreover, despite this loss of sensory cells, motor axons grow out in these segments, many of them later fasciculating to form the hypoglossal nerve. The sclerotomes remain visible until stages 27/28, when they dissociate to form the base of the skull and the atlas and axis vertebrae. After grafting occipital neural tube from quail donor embryos in place of trunk neural tube in host chick embryos, quail-derived ganglia do develop in the trunk sclerotomes. This shows that the failure of occipital ganglion development is not the result of some fixed local property of the neural crest or neural tube at occipital levels. We therefore suggest that in the chick embryo the cranial halves of the five occipital sclerotomes lack factors essential for normal sensory ganglion development, and that these factors are correspondingly present in all the more caudal sclerotomes.  相似文献   

19.
Sexual selection can influence the evolution of sexually dimorphic exaggerated display structures. Herein, we explore whether such costly ornamental integumentary structures evolve independently or if they are correlated with phenotypic change in the associated skeletal system. In birds, elongate tail feathers have frequently evolved in males and are beneficial as intraspecific display structures but impart a locomotor/energetic cost. Using the sexually dimorphic tail feathers of several passeriform species as a model system, we test the hypothesis that taxa with sexually dimorphic tail feathers also exhibit sexual dimorphism in the caudal skeleton that supports the muscles and integument of the tail apparatus. Caudal skeletal morphology is quantified using both geometric morphometrics and linear morphometrics across four sexually dimorphic passeriform species and four closely related monomorphic species. Sexual dimorphism is assessed using permutational MANOVA. Sexual dimorphism in caudal skeletal morphology is found only in those taxa that exhibit active functional differences in tail use between males and females. Thus, dimorphism in tail feather length is not necessarily correlated with the evolution of caudal skeletal dimorphism. Sexual selection is sufficient to generate phenotypic divergence in integumentary display structures between the sexes, but these change are not reflected in the underlying caudal skeleton. This suggests that caudal feathers and bones evolve semi‐independently from one another and evolve at different rates in response to different types of selective pressures.  相似文献   

20.
In decerebrate, vagotomized, paralyzed, and ventilated cats, activities of the phrenic nerve and single hypoglossal nerve fibers were monitored. The great majority of hypoglossal neuronal activities were inspiratory (I), discharging during a period approximating that of phrenic. Many were not active at normocapnia but were recruited in hypercapnia or hypoxia. Once recruited, discharge frequencies, which rose quickly to near maximal levels in early to midinspiration, significantly increased with further augmentations of drive. Also, the onset of activities became progressively earlier, compared with phrenic discharge, in hypercapnia or hypoxia. Smaller numbers of hypoglossal fiber activities, having inspiratory-expiratory (I-E), expiratory (E), expiratory-inspiratory (E-I), or tonic discharge patterns, were also recorded. Activities of E, I-E, and those I fibers that became I-E in high drive may underlie the early burst of expiratory activity of the hypoglossal nerve. It is concluded that the firing and recruitment patterns of hypoglossal neurons differ from those of phrenic motoneurons. However, responses to chemoreceptor stimuli are similar among the two neuronal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号