首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
螺旋藻对小鼠SOD和GSH—Px活力的影响   总被引:1,自引:0,他引:1  
李春坚 《蛇志》1997,9(3):66-67
采用微量测定法,观察螺旋藻对32只昆明种小白鼠全血中超氧化物歧化酶(SOD)和谷光甘肽过氧化物酶(GSH-Px)活性的影响。结果表明,灌胃螺旋藻试验组(SOD)活性(1577.16±169.88IU/gHb),与相应对照组(1336.27±158.23IU/gHb)比较,GSH-Px活性(28.33±2.37IU/ml)与相应对照组(24.87±3.26IU/ml)比较,差别均有非常显著意义(P<0.01);提示螺旋藻有提高动物SOD和GSH-Px活性的功效  相似文献   

2.
Cystatin C (CysC) is a major protein component of Bunina bodies, which are a pathological hallmark observed in the remaining motor neurons of patients with amyotrophic lateral sclerosis (ALS). Dominant mutations in the SOD1 gene, encoding Cu/Zn superoxide dismutase (SOD1), are causative for a subset of inherited ALS cases. Our previous study showed that CysC exerts a neuroprotective effect against mutant SOD1‐mediated toxicity in vitro; however, in vivo evidence of the beneficial effects mediated by CysC remains obscure. Here we examined the therapeutic potential of recombinant human CysC in vivo using a mouse model of ALS in which the ALS‐linked mutated SOD1 gene is expressed (SOD1G93A mice). Intracerebroventricular administration of CysC during the early symptomatic SOD1G93A mice extended their survival times. Administered CysC was predominantly distributed in ventral horn neurons including motor neurons, and induced autophagy through AMP‐activated kinase activation to reduce the amount of insoluble mutant SOD1 species. Moreover, PGC‐1α, a disease modifier of ALS, was restored by CysC through AMP‐activated kinase activation. Finally, the administration of CysC also promoted aggregation of CysC in motor neurons, which is similar to Bunina bodies. Taken together, our findings suggest that CysC represents a promising therapeutic candidate for ALS.

  相似文献   


3.
Bt玉米秸秆杀虫蛋白对赤子爱胜蚓酶活性的影响   总被引:1,自引:0,他引:1  
Shu YH  Ma HH  Du Y  Wang JW 《应用生态学报》2011,22(8):2133-2139
Bt玉米分泌的Bt蛋白可通过秸秆还田、根系分泌、花粉飘落等途径进入土壤.本文模拟秸秆还田,在土壤中添加5%或7.5%的Bt玉米及其同源常规玉米秸秆饲养赤子爱胜蚓,分别于7、14d后检测蚯蚓总蛋白含量、乙酰胆碱酯酶(AchE)、谷胱甘肽过氧化物酶(GSH-PX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性.结果表明:同一玉米品种,同一秸秆添加量处理下,与培养7d相比,培养14d的蚯蚓总蛋白含量下降,AchE、CAT和SOD酶活性提高,GSH-PX酶活性降低.同一培养时间、同一秸秆添加量处理下,与常规相比,Bt玉米培养的蚯蚓SOD活性提高,AchE和GSH-PX活性下降,总蛋白含量和CAT活性无显著变化.表明Bt玉米秸秆处理对蚯蚓总蛋白没有抑制作用,能降低AchE和GSH-PX活性,对CAT没有诱导作用,但在短时间内能诱导蚯蚓SOD酶活性.  相似文献   

4.
超氧化物岐化酶(SOD)和过氧化物酶(POD)是机体内重要的抗氧化酶系之一,其作用在于消除体内的自由基,防止自由基对细胞结构的损伤。它们的活性随增龄而下降,因此自由基不断损伤细胞结构,累积最终导致细胞衰亡和动物机体衰老,老龄小鼠服用DNA一段时间后,其体内SOD和POD的活性均显著提高,因而其衰老速度可能得到一定程度的延缓。  相似文献   

5.
酵母菌中SOD复合酶的初步研究   总被引:1,自引:0,他引:1  
对不同酵母菌中SOD等抗氧化酶的活性进行了初步的分析测定,筛选出了一株诸酶活性都较高的菌株(丹宝利面包活性干酵母)。研究了该酵母在不同培养时期SOD等酶少力的变化情况,发现POD、CAT等酶的活性水平SOD活性的变化有密切的相关性。通过比较几种提取方法的效果,认为利用甲苯破壁法提取SOD复合酶具有一定的可行性。  相似文献   

6.
杨贵军  吴涛  杨乐  王怡 《四川动物》2007,26(1):8-11
本文研究了狼毒不同溶剂提取物对枸杞蚜虫的杀虫活性及其体内SOD和GSH—PX活性的影响。结果表明,狼毒的乙醇、三氯甲烷、石油醚和丙酮提取物对枸杞蚜虫具有较强的触杀活性,其中三氯甲烷提取物触杀活性最强;不同提取物触杀处理对枸杞蚜虫体内SOD和GSH—PX具有不同程度的激活作用,活力变化趋势相似,而在内吸处理中,活力变化复杂,4种提取物处理对枸杞蚜虫两种酶系的活性没有明显的抑制作用。  相似文献   

7.
牛血清白蛋白对超氧化物歧化酶的化学修饰   总被引:3,自引:0,他引:3  
目的:通过化学修饰提高超氧化歧化酶(SOD)的稳定性,考察金属离子在不同浓度下对SOD活性的影响。方法:用戊二醛作为交联剂,用牛血清白蛋白(BSA)将牛红细胞超氧化物歧化酶进行化学修饰,得到SOD的修饰酶。对比研究三种SOD:修饰酶,混合酶及天然酶的理化性质。结果:修饰酶等电点降低,对温度、pH的稳定性较天然酶有很大提高,对胰蛋白酶和胃蛋白酶也表现出很强的耐水解性。二价离子Mg^2 、Mn^2 对天种SOD活力均有不同程度的抵制作用,Ca^2 、Zn^2 、Cu^2 对修饰酶活力有激活作用,一价离子K^ 对三种OSD活力均无明显影响.结论:修饰酶较天然酶的稳定性有很大的提高,加入Ca^2 、Zn^2 、Cu^2 可提高修饰酶的活力。  相似文献   

8.
魔芋葡甘低聚糖抗氧化性初步研究   总被引:3,自引:0,他引:3  
为了检验魔芋葡甘低聚糖抗氧化功能,本文测定了魔芋葡甘低聚糖体外清除自由基及保护DNA氧化损伤能力,并通过连续两周用不同剂量的魔芋葡甘低聚糖灌胃小鼠,检测其对肝脏和血浆中丙二醛(MDA)含量、超氧化物歧化酶(SOD)、谷胱肝肽过氧化物酶(GSH-PX)活性的影响。研究结果显示:魔芋葡甘低聚糖对超氧阴离子自由基(.O2-)和羟自由基(.OH)有较好的清除能力,能有效地保护DNA免受羟自由基的损伤,并且能有效地降低肝脏中丙二醛水平,提高肝脏和血浆中SOD、GSH-PX的活性。  相似文献   

9.
外源SOD和APX基因在转基因烟草中的表达与遗传   总被引:3,自引:0,他引:3  
分析转超氧化物歧化酶基因(SOD)或抗坏血酸过氧化物酶基因(APX)烟草及其自交和杂交后代的叶片中超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的结果表明:转基因烟草的SOD和POD活性在终花期最强,不同叶位叶中SOD活性差异不明显,POD活性以下部叶为最高;转基因烟草的SOD或POD活性显著高于近等基因的非转基因品系。杂交后代(F1、F2)的SOD活性能保持稳定,略高于亲本;自交后代(S1~S3)与自交亲本的SOD和POD活性相当。  相似文献   

10.
The toxic property thus far shared by both ALS‐linked SOD1 variants and wild‐type SOD1 is an increased propensity to aggregation. However, whether SOD1 oligomers or aggregates are toxic to cells remains to be well defined. Moreover, how the toxic SOD1 species are removed from intra‐ and extracellular environments also needs to be further explored. The DNA binding has been shown to be capable of accelerating the aggregatio\n of wild‐type and oxidized SOD1 forms under acidic and neutral conditions. In this study, we explore the binding of DNA and heparin, two types of essential life polyanions, to A4V, an ALS‐linked SOD1 mutant, under acidic conditions, and its consequences. The polyanion binding alters the A4V conformation, neutralizes its local positive charges, and increases its local concentrations along the polyanion chain, which are sufficient to lead to acceleration of the pH‐dependent A4V aggregation. The accelerated aggregation, which is ascribed to the polyanion binding‐mediated removal or shortening of the lag phase in aggregation, contributes to the formation of amorphous A4V nanoparticles. The prolonged incubation with polyanions not only results in the complete conversion of likely soluble toxic A4V oligomers into non‐ and low‐toxic SDS‐resistant aggregates, but also increases their stability. Although this is only an initial step toward reducing the toxicity of SOD1 mutants, the accelerating role of polyanions in protein aggregation might become one of the rapid pathways that remove toxic forms of SOD1 mutants from intra‐ and extracellular environments. Proteins 2014; 82:3356–3372. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
黄芩黄酮对硒性白内障晶状体抗氧化酶表达的影响   总被引:9,自引:0,他引:9  
为探讨黄芩黄酮防治白内障的作用机理 ,采用半定量RT PCR方法比较正常组、白内障组和中药防治组大鼠晶状体中GSH Px、GR和Cu ZnSOD的mRNA水平 .白内障组GSH Px、GR和Cu ZnSOD的mRNA水平在 15d龄时显著高于正常 ,然后下降 ;在 2 7d和 31d龄 ,GR和Cu ZnSOD的mRNA水平下降至与正常无显著差异 ,GSH PxmRNA水平仍略高于正常 .中药防治组晶状体中 ,3种抗氧化酶的mRNA水平在各实验取样点无明显变化 ;其中 ,GR和Cu ZnSOD的mRNA水平一直与正常无显著差异 ,GSH PxmRNA水平略高于正常 .黄芩黄酮可能通过有效清除亚硒酸钠间接产生的活性氧来防止白内障的发生 ,并使亚硒酸钠对晶状体抗氧化酶表达的影响得以消除  相似文献   

12.
Yang Liu  Rutao Liu 《Luminescence》2015,30(8):1195-1200
Silver nanoparticles (nanoAg) are used more and more widely, particularly because of their antimicrobial properties. The effect of exposure to nanoAg on the structure of superoxide dismutase (SOD) was thoroughly investigated using fluorescence measurements, synchronous fluorescence spectroscopy, steady‐state and time‐resolved fluorescence quenching measurements, UV/Vis absorption spectroscopy, resonance light scattering (RLS), circular dichroism (CD), isothermal titration calorimetry (ITC) and high‐resolution transmission electron microscopy (HRTEM). Through van der Waal's force, nanoAg interacted with Cu–Zn SOD and influenced the active site by inducing structural changes, which influenced the function of SOD. The fluorescence studies show that both static and dynamic quenching processes occur. This paper provides reference data for toxicological studies of nanoAg, which are important in the future development of nanotechnology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
抗坏血酸(ASA) 能减轻沙打旺原生质体的褐化,改善原生质体的培养状况。ASA的作用可能与它增强原生质体抗过氧化能力有关。酶解处理诱导原生质体超氧化物歧化酶(SOD) 和抗坏血酸过氧化物酶(APX)活性升高,但培养过程使APX 活性明显下降,原生质体清除过氧化物能力减弱,膜脂过氧化产物丙二醛( MDA) 积累增加,膜发生损伤。向酶溶液和培养基中添加ASA 可显著提高SOD 尤其是APX 活性,减轻膜脂过氧化,增强原生质体的存活力,促进原生质体的分裂和细胞克隆的形成。所有处理中过氧化氢酶(CAT) 活性变化不大,表明它在原生质体清除过氧化物过程中不具主要作用。  相似文献   

14.
In this study, we have analyzed superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, biomass accumulation and chlorophyll‐a content in the Arthrospira platensis ‐M2 strain grown at different concentrations of zinc (Zn), tin (Sn) and mercury (Hg). We found that there is a close relationship between chlorophyll‐a content and biomass accumulation in A. platensis ‐M2 strain as a result of Zn, Sn and Hg exposures. Sn was found to be the most toxic heavy metal among others because of the continious inhibition of both biomass and chlorophyll‐a accumulation at 500 and 1000 μg mL?1 concentrations after the third day of the study, while they represented continuous increases at each Zn and Hg concentration over 7 days. Lower concentrations of Zn and Sn stimulate SOD and GR activities remarkably, probably due to oxidative stress caused by heavy metal toxicity. APX activity was significantly lowered by higher concentrations of the three metals used in this study. Our results suggest that higher heavy metal concentrations inhibited SOD, APX and GR activities but biomass and chlorophyll‐a accumulation endured in a time‐dependent manner, possibly due to some different defence mechanisms, which remain to be investigated.  相似文献   

15.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important metal-containing antioxidant enzyme that provides the first line of defense against toxic superoxide radicals by catalyzing their dismutation to oxygen and hydrogen peroxide. SOD is classified into four metalloprotein isoforms, namely, Cu/Zn SOD, Mn SOD, Ni SOD and Fe SOD. The structural models of soybean SOD isoforms have not yet been solved. In this study, we describe structural models for soybean Cu/Zn SOD, Mn SOD and Fe SOD and provide insights into the molecular function of this metal-binding enzyme in improving tolerance to oxidative stress in plants.  相似文献   

16.
17.
The free radical scavenging activity of the Japanese herbal medicine, Toki-Shakuyaku-San (TJ-23; TSUMURA & Co., Tokyo, Japan), was examined using electron spin resonance (ESR) spectrometry. TJ-23 scavenged 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), superoxide (O2 ), and hydroxyl radicals (·OH) dose-dependently. It also diminished carbon centered radicals (·C) generated by oxidative stress and inhibited thiobarbituric acid-reactive substances (TBARS) formation in mouse cortex homogenate. In addition, the effect of TJ-23 on the concentration of neurotransmitters and TBARS formation, and superoxide dismutase (SOD) activity in the cortex, hippocampus and striatum of the aged rat brain was studied. The concentrations of the metabolites of monoamines, glutamate and glutamine were decreased by 4 weeks of oral administration of TJ-23. The SOD activity of mitochondrial fraction was increased and TBARS formation was significantly suppressed. These results suggest that TJ-23 has an antioxidant action and would have a prophylactic effect against free radical-mediated neurological diseases associated with aging.  相似文献   

18.
Oxidative stress is a major factor in aging processes. Superoxide dismutase 3 (SOD3) plays a key role in the protection of extracellular oxidative stress. Missense mutations in SOD3 have been described to be associated with the occurrence of pulmonary, cardiovascular, and neoplastic diseases. This study aims to analyze the effects of missense mutations on the SOD3 structure and function by modeling a complete SOD3 structure as well as analyzing the differences between the wild-types and mutants using computational simulations. Here, ten algorithms were used to predict the structural and functional effects of missense mutations. A complete model of SOD3 protein was made by ab initio and comparative modeling using the Rosetta algorithm and validated by PROCHECK, Verify 3D, QMEAN, and ProSa. Molecular dynamics (MD) simulations were performed and analyzed using the GROMACS package. The deleterious potential of the A58T and R231G mutants was not predicted by the majority of the used algorithms. The analyzed mutations were predicted as destabilizing by at least one algorithm. The MD analyses indicated that protein flexibility may be increased by all of the analyzed mutations, while the protein-ligand stability may be decreased. They also suggested that the variants A91T and R231G increase the overall dimensions of SOD3 and decrease its accessible surface area. Our findings, therefore, indicated that the analyzed mutations could affect the protein structure and its ability to interact with other molecules, which may be related to the functional impairment of SOD3 upon A58T and R231G mutations, as well as their involvement in pathologies.  相似文献   

19.
对盆栽十二叶龄的3个烟草近等基因系进行淹水处理后的结果表明:随着淹水时间的延长,细胞质膜透性、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性均显著升高;叶绿素和可溶性蛋白质含量、株高、叶片数及生物量均下降.各种指标在短时间内不能恢复到正常水平或者根本不能恢复.3个品系抗涝性强弱依序为:转基因抗坏血酸过氧化物酶(APX)高表达品系>转Mn-SOD基因叶绿体高表达品系>非转基因品系.  相似文献   

20.
Extremely low‐frequency electromagnetic fields (ELF‐EMFs) may cause negative health effects. This study aimed to investigate the direct and indirect effects of chronic exposure to extremely low‐frequency electric and magnetic fields on the prevalence of musculoskeletal disorders (MSDs). In this cross‐sectional study, 152 power plant workers were enrolled. The exposure level of employees was measured based on the IEEE Std C95.3.1 standard. Superoxide dismutase (SOD), catalase (Cat), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) (independent variables) were measured in the serum of subjects. The Nordic musculoskeletal questionnaire was used to assess MSDs (dependent variable). The mean exposure of electric and magnetic fields were 4.09 V/m (standard deviation [SD] = 4.08) and 16.27 µT (SD = 22.99), respectively. Increased levels of SOD, Cat, GPx, and MDA had a direct significant relation with MSDs. In the logistic regression model, SOD (odds ratio [OR] = 0.952, P = 0.026), GPx (OR = 0.991, P = 0.048), and MDA (OR = 0.741, P = 0.021) were significant predictors of MSDs. ELF‐EMFs were not related to MSDs directly; however, increased levels of oxidative stress may cause MSDs. Bioelectromagnetics. 2019;40:354–360. © 2019 Bioelectromagnetics Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号