首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel–dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro‐computed tomography was employed to non‐destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Dental casts of 160 Greek subjects (80 males, 80 females) were scanned by a structured‐light scanner. The upper and lower right first molar occlusal surface 3D meshes were processed using geometric morphometric methods. A total of 265 and 274 curve and surface sliding semilandmarks were placed on the upper and lower molar surfaces, respectively. Principal component analysis and partial least square analysis were performed to assess shape parameters. Molars tended to vary between an elongated and a more square form. The first two principal components (PCs), comprising almost 1/3 of molar shape variation, were related to mesiodistal–buccolingual ratios and relative cusp position. Distal cusps displayed the greatest shape variability. Molars of males were larger than those of females (2.8 and 3.2% for upper and lower molars respectively), but no shape dimorphism was observed. Upper and lower molar sizes were significantly correlated (r2 = 0.689). Allometry was observed for both teeth. Larger lower molars were associated with shorter cusps, expansion of the distal cusp, and constriction of the mesial cusps (predicted variance 3.25%). Upper molars displayed weaker allometry (predicted variance 1.59%). Upper and lower molar shape covariation proved significant (RV = 17.26%, P < 0.0001). The main parameter of molar covariation in partial least square axis 1, contributing to 30% of total covariation, was cusp height, in contrast to the primary variability traits exhibited by PC1 and PC2. The aim of this study was to evaluate shape variation and covariation, including allometry and sexual dimorphism, of maxillary and mandibular first permanent molar occlusal surfaces. Am J Phys Anthropol 152:186–196, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
SUMMARY Morphological integration corresponds to interdependency between characters that can arise from several causes. Proximal causes of integration include that different phenotypic features may share common genetic sets and/or interact during their development. Ultimate causes may be the prolonged effect of selection favoring integration of functionally interacting characters, achieved by the molding of these proximal causes. Strong and direct interactions among successive teeth of a molar row are predicted by genetic and developmental evidences. Functional constraints related to occlusion, however, should have selected more strongly for a morphological integration of occluding teeth and a corresponding evolution of the underlying developmental and genetic pathways. To investigate how these predictions match the patterns of phenotypic integration, we studied the co‐variation among the six molars of the murine molar row, focusing on two populations of house mice (Mus musculus domesticus) and wood mice (Apodemus sylvaticus). The size and shape of the three upper and lower molars were quantified and compared. Our results evidenced similar patterns in both species, size being more integrated than shape among all the teeth, and both size and shape co‐varying strongly between adjacent teeth, but also between occluding teeth. Strong co‐variation within each molar row is in agreement with developmental models showing a cascade influence of the first molar on the subsequent molars. In contrast, the strong co‐variation between molars of the occluding tooth rows confirms that functional constraints molded patterns of integration and probably the underlying developmental pathways despite the low level of direct developmental interactions occurring among molar rows. These patterns of co‐variation are furthermore conserved between the house mouse and the wood mouse that diverged >10 Ma, suggesting that they may constitute long‐running constraints to the diversification of the murine rodent dentition.  相似文献   

4.
The diversity of items consumed by modern didelphids, varying from mostly fruits in Caluromys Allen to mostly small vertebrates in Lutreolina O. Thomas, may cause changes in molar size and shape. We evaluated the morphometric variation of the first and third upper and lower molars of 16 genera of didelphid marsupials, with the aim of assessing the relationship between molar shape change, diet and phylogeny. We used a geometric morphometric approach to analyse how shape changes with diet. We mapped shape onto the phylogeny of the group to reconstruct ancestral states and analyse the evolution of molar shape. Finally, we statistically estimated the effect of size, diet and phylogeny on molar shape. All the analyses indicated little correlation between diet and molar shape and a strong correlation between the position of each genus on the phylogeny and molar shape. We believe that the wide ecological niche used by most of the groups (at least regarding diet) makes the evolutionary changes not strong enough to override pre‐existing differences that occur among clades, and the absence of highly diet‐specialized species (e.g. hypercarnivory or obligate folivory) causes the need for retaining a molar shape that can be useful to process different kinds of food items. © 2014 The Linnean Society of London  相似文献   

5.
‘Symmetrodontans’ are extinct mammals characterized by having a reversed‐triangle molar pattern in which three main cusps define a triangular molar crown. This dental morpholgy has been regarded as being intermediate between the ‘triconodont’ tooth and the tribosphenic pattern characterizing therians; it is a key feature in taxonomy of Mesozoic mammals and one to understand mammalian evolution and palaeobiology. Here we report a new genus and species of ‘symmetrodontan’ mammal, Lactodens sheni, from the Early Cretaceous Jehol Biota, represented by a partial skeleton with dentary and upper and lower teeth with dental morphologies well‐preserved. The new species has a dental formula of three upper incisors, one canine, three premolars, and six molars/three lower incisors, one canine, five premolars and six lower molars, double‐rooted canines, extremely low‐crowned and transversely thin premolars, and acute angled molars. The dental morphologies of molars and peculiar deciduous premolars are similar to those of Spalacolestes from North America. The associated upper and lower dentitions from one individual animal helped to clarify tooth identification of some spalacotheriids represented only by fragmentary material. Phylogenetic analyses indicate a close relationship of the new species to North American spalacolestines and faunal interchanges between Eurasia and North America, thus supporting the notion that small‐bodied spalacotheriids were diverse and had a pan‐Laurasian distribution during the Early Cretaceous. Absence of the Meckelian groove suggests acquisition of the definitive mammalian middle ear in spalacolestines, and deciduous canines and premolars in the slim and extremely long dentary imply a faunivorous diet.  相似文献   

6.
MOLAR OCCLUSION IN LATE TRIASSIC MAMMALS   总被引:1,自引:0,他引:1  
1. A new genus and species of late Triassic mammal, Megazostrodon rudnerae, from Lesotho in southern Africa is described. The molars are similar to those of the British Eozostrodon parvus except that they are slightly larger and the upper molars have a large external cingulum supporting well-developed cusps. 2. Molar occlusion is discussed in two groups of late Triassic mammals: Eoxostrodon and the closely related Megazostrodon on one the hand and the unnamed primitive symmetrodonts on the other. It is shown that in Eoxostrodon the upper and lower molars did not have matching occlusal surfaces upon eruption but that wear produced matching occlusal surfaces. These surfaces are confined to the internal surface of the upper molars and the external surface of the lower molars and form a series of wide-angled triangles. The main cusp of an upper molar occluded between the main and posterior subsidiary cusp of the lower molar and the main cusp of the lower molar occluded between the main and anterior subsidiary cusp of the upper molar, 3. It is shown that the molars of Docodon and HaIdanodon were possibly derived from those of a primitive mammal such as Eozostrodon. The transition involved the development on the upper molars of an internal extension which, as it increased in size, established contact with the dorsal surfaces of two adjacent lower molars. The process involved is fundamentally different from that leading to tribosphenic molars. 4. In Megaxostrodon the main cusp of the upper molars occluded between the posterior and anterior subsidiary cusps of two adjacent lower molars, i.e. more posteriorly than in Eozostrodon. Primitive Rhaetic symmetrodonts were derived from mammals which had this type of occlusion and which were also closely related to Eoxostrodon and Megaxostrodon. The transition involved a rotation of the subsidiary cusps of the upper molars externally and those of the lower molars internally. This rotation increased the shearing surfaces between occluding upper and lower molars. Cusp rotation was carried further in the acute-angled symmetrodonts (Peralestes and Spalacotherium) and pantotheres. It appears that marked cusp rotation was coupled with the acquisition of transverse movements of the lower jaw during mastication. Transverse movement was apparently not possible in cynodonts, in Eoxostrodon (and related forms) and in Docodon. 5. The evolution of therian molars involves cusp rotation as originally proposed by the Cope—Osborn theory. Criticisms of the Cope—Osborn theory are re-evaluated in light of the new late Triassic material. 6. In Rhaetic symmetrodonts, molar wear produces matching occlusal facets, but the amount of attrition necessary to produce these facets was considerably less than in Eoxostrodon. In acute-angled symmetrodonts and in pantotheres, the molars erupt with more precise occlusal surfaces and attrition was not necessary to produce matching surfaces. 7. On the basis of the structure of the molar teeth it was concluded that Eozostrodon, Megazostrodon and Erythrotherium were closely related to the Rhaetic symmetrodonts. Slightly different occlusal relationships between upper and lower molars indicated that in these early mammals constant occlusal relations were being established. 8. Primitive cynodonts, such as Thrinaxodon, are characterized by alternate tooth replacement; there is a total lack of a constant occlusal relationship between upper and lower postcanine teeth. In Thrinaxodon individual postcanines were replaced several times. The crown structures of successive generations of postcanines were different so that a freshly erupted postcanine tooth had a crown structure quite distinct from the tooth which it replaced. It has been shown that the crown structure of one of the generations of postcanine teeth of Thrinaxodon is almost identical to that of Eozostrodon except that Thrinaxodon postcanines have a single root, On the basis of this similarity and the over-all structure of the primitive cynodont skull, it was concluded that Rhaetic mammals (excluding ictidosaurs and haramyids) could be derived from primitive cynodonts. 9. All the orders of Jurassic mammals (with the possible exception of multituber-culates) were probably derived from late Triassic mammals. The apparent close relationship of late Triassic mammals is evidence of a monophyletic origin of this class.  相似文献   

7.
Abstract: The controversial taxon Colombitherium tolimense (Mammalia) (probably Late Eocene in age) from Colombia, although known for nearly 40 years, still bears much mystery. Aside from the problematic ordinal attribution of the holotype and only specimen, its determination as an upper or lower jaw remains a highly debated issue. New observations include the presence of a contact facet on the distal face of the most posterior tooth, which indicates that the fragmentary jaw preserves three premolars and two molars; the M3, unpreserved but present, being most probably reduced. This new interpretation completely fits the morphology of the teeth. Furthermore, the shape of these latter and the deeper wear encompassed by their lingual part relative to the labial one is typical of upper dentition. This is in agreement with the internal curving of the roots of the anterior premolars and with several other arguments that lead interpreting the holotype of C. tolimense as a maxillary bearing P2‐M2. This new interpretation deepens the morphological gap between Colombitherium and other pyrotherians (except Proticia) and challenges further its referral to Pyrotheria. The peculiar morphology of Colombitherium relative to other pyrotherians is indeed striking. In fact, Colombitherium has nothing in common with pyrotherians but bilophodont cheek teeth, a feature largely widespread in placental mammals. It is here referred to ?Pyrotheria until additional evidence of its relationships is known. Associated with the putative removal of Proticia from Pyrotheria as argued by some authors, the hypothetical removal of Colombitherium from the order would adjust the widely accepted assumption that the pyrotherian bilophodont cheek teeth originated from bunodont cheek teeth. It would also make an origin from lophodont forms plausible. This in turn would have critical relevance, especially to the hypothesis that pyrotherians are notoungulates.  相似文献   

8.
The Late Miocene hominoids recovered from Lufeng (Lufengpithecus) and Yuanmou of Yunnan Province, China, are among the most numerous hominoid fossils in Eurasia. They have yielded critical evidence for the evolutionary history, biogeography and paleobiology of Miocene hominoids. We examined and compared the wear pattern and differences of 804 molars of the Yuanmou hominoid and Lufengpithecus. Our results indicate that both the upper and lower molars of the Yuanmou hominoids were more heavily worn than those of Lufengpithecus. The wear patterns of the individual molars between the Yuanmou hominoid and Lufengpithecus also are different. The heaviest wear of lower molars of the Yuanmou hominoid occur in M2, followed by M1 and M3. In Lufengpithecus, M1 and M3 were more heavily worn than M2. There are differences in wear between the upper and lower molars for the two hominoids. Among the various factors related to tooth wear, we suggest that the main reason for the tooth wear differences between the Yuanmou hominoid and Lufengpithecus may be that they had different diets. More soft dietary items like leaves and berries were probably consumed by Lufengpithecus, and the Yuanmou hominoid may mainly have feed on harder or frugivorous diets. This result complements findings from previous studies of tooth size proportion, and the development of lower molar shearing crests in the 2 samples. Enamel thickness, living environment, behavior patterns, and population structure also might account for dental wear differences between the Yuanmou hominoid and Lufengpithecus.  相似文献   

9.
Abstract: The Laventan Quebrada Honda Fauna of southern Bolivia is one of the best sampled middle Miocene South American faunas. The present study describes the toxodontid, interatheriid and mesotheriid notoungulates from Quebrada Honda and summarizes the present state of knowledge of the fauna. Toxodontid specimens from Quebrada Honda include two isolated molars, one upper and one lower. The upper molar compares favourably with Paratrigodon and may represent a new species, but too little material is known to make an adequate diagnosis. The lower molar may pertain to the same taxon, or to a distinct species that is even more poorly represented. A new species of the interatheriid Miocochilius is described, M. federicoi, on the basis of a partial skull. It differs from M. anomopodus in its significantly smaller size (at least 20 per cent smaller based on linear upper molar dimensions); relatively wider P4 with deeper lingual sulcus; more prominent middle lobes on upper molars; and M3 with deeper lingual sulcus and more prominent metastyle (distal lobe). The generic allocation of this new species is considered tentative, pending a better understanding of the phylogenetic relationships among currently recognized species of Miocochilius and Protypotherium. Mesotheriids are represented at Quebrada Honda by a pair of poorly preserved mandibles that are referred to Plesiotypotherium minor, a species previously recorded from slightly older deposits near Cerdas, Bolivia. A newly revised faunal list for Quebrada Honda is compiled that includes 30 species of non‐volant mammals, 27 of which have been identified to at least genus level. This revised faunal list is used to compare Quebrada Honda to other well‐sampled middle–late Miocene faunas (including La Venta, Columbia; Collón‐Curá, Argentina; and Arroyo Chasicó, Argentina) using the Simpson Index of faunal similarity. In order to compensate for inadequately identified specimens (i.e. those not identified to genus level), minimum and maximum values of faunal similarly were estimated using two different sets of assumptions. The analysis indicates that the middle‐latitude Quebrada Honda Fauna is more similar to the slightly older high‐latitude fauna of Collón‐Curá than to the contemporaneous low‐latitude fauna of La Venta, suggesting that isolating mechanisms between the low and middle latitudes were in place during the early and/or middle Miocene. The relative paucity of taxa shared between Quebrada Honda and La Venta, despite their contemporaneity, suggests that the system of South American Land Mammal ‘Ages’ (SALMAs) may not be useful for biocorrelation between low‐latitude faunas and those from elsewhere in South America.  相似文献   

10.
Morphometric characters can be of use for elucidating the evolutionary history of species by providing an insight into the selective pressure related to the character of interest, and by allowing integration of fossil specimens. This potential interest of phenotypic characters, however, depends on how much other sources of variation, such as the life-history of the animal, may blur an evolutionary signal. For instance, age structure varies along the year, causing in turn various assemblages of wear stages in the teeth sampled at a given place and time. In this context, we investigated the season of trapping as potential source of variation in the size and shape of the molar occlusal surface of the bank vole, Clethrionomys glareolus.The size and shape of the occlusal surface of the third upper molar was quantified using outline analysis in 60 bank voles from Finland, trapped at the same study site in successive spring and autumn. The occlusal surface clearly differed in size and shape between the two seasons of trapping. Using 3D imaging as a visual support, we interpret this difference as the result of differential wear. The population in autumn is dominated by young specimens with unworn teeth whereas spring populations are composed of old animals with worn down molars. The range of seasonal variation in tooth size and shape appears to be of the same order of magnitude as biogeographic variation, demonstrating that differential wear may have a strong impact on biogeographic and evolutionary studies. Yet, beyond the effect of trapping season, a biogeographic signal still emerged, related to the genetic lineages evidenced in other studies. In consequence, morphometric characters such as size and shape of molar occlusal surfaces appear as valuable tracers of biogeographic differentiation, but future studies should take seasonal variations into account for more robust interpretation.  相似文献   

11.
Since teeth are resistant to decomposition processes, they provide important and at times unique sources of information about fossil humans. Fortunately, dental remains reflect significant evolutionary changes. These changes make a very important and often exclusive contribution to the definition of new taxa or the attribution of fossil specimens to existing taxa.The traditional approach to dental morphometric analyses usually focuses on the recording of several measures of the tooth with calipers, especially the two basic crown diameters (buccolingual and mesiodistal). However, since these measures do not adequately represent the complex morphology of the tooth, 2D images and 3D digital models of dental morphology have been used. For both types of analysis, the possibility of correctly comparing homologous teeth depends on the adoption of a common orientation system. The lack of such a system makes it difficult to compare the results of different studies.Here we describe a new method for orienting teeth specifically devised for the upper and lower first molar (M1). Samples of unworn maxillary (n = 15) and mandibular (n = 15) first molars of modern humans were scanned with a Roland Picza 3D digitizer. The 3D virtual models were used to compare our new orientation method with those proposed in the literature. The new orientation system, which meets a geometric criterion, is based on three points identified on the cervical line and ensures acceptable repeatability of the spatial positioning and orientation independent of the shape and wear of the first molar under investigation. This orientation system is a first step toward the creation of a virtual set of hominid and fossil human first molars, which will allow us to make comparisons via a sophisticated and noninvasive approach. This pilot study also provides guidelines to extend the new methodology to the other types of teeth.  相似文献   

12.
The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin‐enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin–enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin–enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample. Am. J. Primatol. 72:481–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Studies of dental macrowear can be useful for understanding masticatory and ingestive behavior, life history, and for inferring dietary information from the skeletal material of extinct and extant primates. Such studies to date have tended to focus on one or two teeth, potentially missing information that can be garnered through examination of wear patterns across the tooth row. Our study measured macrowear in the postcanine teeth of three sympatric cercopithecid species from the Taï Forest, Côte d'Ivoire (Cercocebus atys, Procolobus badius, and Colobus polykomos), whose diets have been well‐described. Inter‐specific analyses suggest that different diets and ingestive behaviors are characterized by different patterns of wear across the molar row, with Cercocebus atys emphasizing tooth use near P4‐M1, P. badius emphasizing a large amount of tooth use near M2‐M3, and Colobus polykomos exhibiting wear more evenly across the postcanine teeth. Information regarding differential tooth use across the molar row may be more informative than macrowear analysis of isolated teeth for making inferences about primate feeding behavior. Am J Phys Anthropol 150:655–665, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
High variability in the dentition of Homo can create uncertainties in the correct identification of isolated teeth. For instance, standard tooth identification criteria cannot determine with absolute certainty if an isolated tooth is a second or third maxillary molar. In this contribution, using occlusal fingerprint analysis, we reassess the identification of Krapina D58 (Homo neanderthalensis), which is catalogued as a third maxillary molar. We have hypothesized that the presence/absence of the distal occlusal wear facets can be used to differentiate second from third maxillary molars. The results obtained confirm our hypothesis, showing a significant difference between second and third maxillary molars. In particular we note the complete absence of Facets 7 and 10 in all third molars included in this analysis. The presence of these facets in Krapina D58 eliminates the possibility that it is a third maxillary molar. Consequently it should be reclassified as a second molar. Although this method is limited by the degree of dental wear (i.e., unworn teeth cannot be analyzed) and to individual molars in full occlusion, it can be used for tooth identification when other common criteria are not sufficient to discriminate between second and third maxillary molars. Am J Phys Anthropol 143:306–312, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Most of the 16 currently recognized astrapothere genera are well known through numerous specimens preserving at least almost complete dentition. One of the exceptions is the enigmatic genus Isolophodon Roth, 1903, based on very scant and fragmentary materials from Paleogene levels of central Patagonia. This taxon was ruled out from almost all taxonomic lists, although its validity has not been discussed by subsequent authors. We herein re-describe and discuss the taxonomic status of the species of Isolophodon. The type species, I. cingulosus Roth, 1903, is characterized by having lower cheek teeth with a much reduced hypoflexid, resembling derived uruguaytheriines, but lower-crowned and with three lower premolars, as in the species of Astraponotus Ameghino, 1901. This is the only astrapothere nominal species attributable to the Tinguirirican South American Land Mammal Age (SALMA, Early Oligocene). Isolophodon aplanatus Roth, 1903 (Casamayoran and Mustersan SALMAs, middle Late Eocene) has proportionally more elongated lower molars and a less developed paraflexid than the type species. Isolophodon would represent an early diverging lineage of astrapotheriids, in which some dental features evolved convergently with the more derived uruguaytheriines. Additionally, we describe other fragmentary but very significant specimens from Paleogene localities in central Patagonia (Argentina) attributable to the following taxa: cf. Scaglia kraglievichorum (Barrancan? subage), based on a partial upper molar nearly 60% larger than the type of Scaglia kraglievichorum Simpson, 1957; Astrapotheriidae gen. et sp. 1 (Barrancan? Subage, Middle Eocene), based on an isolated upper molar larger than any other Eocene astrapothere; Astrapotheriidae gen. et sp. 2, based on five isolated upper cheek teeth from “La Cantera” (Gran Barranca, Early Oligocene), characterized by a large, isolated hypocone and accessory cusps on P3-P4. These taxa enlarge the known diversity of Paleogene astrapotheres and document novel evolutionary patterns for these mammals.  相似文献   

17.
Two genera and three species of adapid primates are known from the middle and late Miocene of India and Pakistan. Most fossil specimens are fragmentary, but the best-known species, Sivaladapis nagrii,is now represented by enough specimens to permit composite reconstruction of much of the dentition. The incisors of Sivaladapishave spatulate crowns, and the canines are large, projecting teeth. Premolars and molars exhibit complex occlusion involving simultaneous approximation of pointed leading cusps on upper and lower molars, with linear trailing lophs. The premolar eruption sequence in Sivaladapisappears to be P 2-P4-P3, as in most extant prosimians. Symphyseal fusion of the mandibular rami occurred early in ontogeny, before the eruption of any of the anterior permanent teeth. We interpret Sivaladapisto have been a specialized arboreal folivore that became extinct near the end of the Miocene, when the distribution of forests was increasingly restricted and colobine monkeys first invaded South Asia.  相似文献   

18.
Geographical patterns of morphological variation in small mammals are often associated with environmental factors. The southern red‐backed vole Myodes gapperi is a widespread and abundant small mammal in Canada, occurring in environments as diverse as mixed‐wood forests and taiga. First upper molars and skulls from nine populations of southern red‐backed voles distributed across three ecozones and approximately 10° of latitude were analysed by means of geometric morphometric techniques, and their relationships with environmental variables were examined. A weak, non‐linear trend of size increase towards higher latitudes was observed in voles' skulls. Environmental variables appeared to be important drivers of shape differentiation among populations from the three distinct ecozones analysed. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 204–218.  相似文献   

19.
In Europe, the fossil record of Late Cretaceous eutherian mammals is very poor, being limited to only three genera (Labes, Lainodon, and Valentinella). Labes and Lainodon are well‐supported members of Zhelestidae, a stem eutherian clade, whereas Valentinella is more problematic, being recently considered as a nomen dubium. Based on X‐ray computed microtomography scan analysis of the holotype and thanks to the discovery of new specimens from the type locality (Vitrolles‐La Plaine, south‐eastern France, late Maastrichtian), we reassessed Valentinella. This genus is unique by the association of an enlarged and rounded jaw angle with an assumed relatively elevated angular process, a bulbous protoconid and an unbasined heel on p4, a p5 with a wide molariform talonid and a hypoflexid, a robust molar morphology with a potential specialized crushing‐grinding function (bulbously constructed cusps, large talonid, and horizontal apical wear facet of the hypocone), a somewhat reduced m3 relative to m2, a premolariform ?P3 or ?P4 lacking a metacone, and a relatively large hypocone on upper molars. These characters reinstate Valentinella as a valid genus. We also describe Mistralestes arcensis gen. et sp. nov. from a newly discovered locality (La Cairanne‐Highway, south‐eastern France, late Campanian). Mistralestes is defined by a robust premolariform p5 with no cingulid, paraconid, or metaconid; molars with a transverse protocristid, a gradual compression of the trigonid from m1 to m3, and paracristid and protocristid probably confluent on m3. Based on comparisons and phylogenetic analyses, Valentinella and Mistralestes may belong to Zhelestidae but this systematic attribution remains poorly supported. © 2013 The Linnean Society of London  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号