首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

2.
Nitric oxide synthase and postischemic liver injury   总被引:8,自引:0,他引:8  
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.  相似文献   

3.
The objective of this study was to assess the role of inducible nitric oxide synthase (iNOS) in ischemia- and reperfusion (I/R)-induced liver injury. We found that partial hepatic ischemia involving 70% of the liver resulted in a time-dependent increase in serum alanine aminotransferase (ALT) levels at 1-6 h following reperfusion. Liver injury at 1, 3, and 6 h post-ischemia was not due to the infiltration of neutrophils as assessed by tissue myeloperoxidase (MPO) activity and histopathology. iNOS-deficient mice subjected to the same duration of ischemia and reperfusion showed dramatic and significant increases in liver injury at 3 but not 6 h following reperfusion compared to their wild type controls. Paradoxically, iNOS mRNA expression was not detected in the livers of wild type mice at any point during the reperfusion period and pharmacological inhibition of iNOS using L-N(6)(iminoethyl)-lysine (L-NIL) did not exacerbate post-ischemic liver injury at any time post-reperfusion. These data suggest that iNOS deficiency produces unanticipated genetic alterations that renders these mice more sensitive to liver I/R-induced injury.  相似文献   

4.
目的:研究大鼠肢体缺血/再灌注后急性肺损伤时,内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(i-NOS)的表达及其在急性肺损伤发生中的作用。方法:雄性Wistar大鼠于后肢根部阻断血流后松解(4h/4h),分别给予L-Arg和氨基胍(AG)预先干预,分为control、IR、L-Arg和AG组,免疫组织化学方法检测肺组织中iNOS和eNOS的表达,同时检测肺组织中MDA、MPO、W/D和NO2^-/NO3^-值,肺组织形态学观察以评价肺损伤的程度。结果:与control组比较,I/R组eNOS表达降低,iNOS表达增强,MDA、MPO、W/D和NO2^-/NO3^-值增加。肺组织充血、炎细胞浸润,肺泡腔渗液;与I/R组比较,L-Arg组eNOS、iNOS表达无明显变化,NO2^-/NO3^-增加。MDA、MPO、W/D降低,肺组织损伤有减轻趋势,AG组eNOS表达无明显变化,iNOS活性降低,NO2^-/NO3^-减少,MDA、MPO、W/D增加,肺组织损伤有加重趋势。结论:肢体缺血/再灌注急性肺损伤过程中,iNOS表达增加,NO生成增多,在肺损伤发生中有一定的保护作用。  相似文献   

5.
Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo   总被引:38,自引:0,他引:38  
To determine the role of neutrophils in the pathogenesis of hepatic ischemia/reperfusion injury, livers from male Fischer rats were subjected to 45 min of no-flow ischemia followed by reperfusion for up to 24 h. Two phases of liver injury were identified, an initial phase during the first hour of reperfusion and a later progression phase with 80 +/- 3% hepatocyte necrosis and an 80-fold increase of neutrophil infiltration in the liver after 24 h. Pretreatment with a monoclonal antibody against neutrophils, which caused consistent neutropenia, protected the liver from reperfusion injury as indicated by 28 +/- 10% necrosis, and 84% reduction of hepatic neutrophil accumulation and a complete recovery of the hepatic ATP content. Our data suggest that the later progression phase of reperfusion injury after hepatic no-flow ischemia is mediated mainly by neutrophils.  相似文献   

6.

Background

It is of importance to minimize ischemia reperfusion (I/R) injury during liver operations. Reducing the inflammatory reaction is an effective way to achieve this goal. Notably, adiponectin (APN) was found to have anti-inflammatory activity in heart and renal I/R injury. Herein, we investigated the role of APN in liver I/R injury.

Methods

Wistar rats were randomized to four groups: (1) sham group; (2) I/R control group; (3) I/R+APN group; and (4) I/R+APN+AMPK inhibitor group. Liver and blood samples were collected 6h and 24h after reperfusion. Liver function and histopathologic changes were assessed. Macrophage and neutrophil infiltration was detected by immunohistochemistry staining, while pro-inflammatory cytokines and chemokines released in the liver were measured using ELISA and RT-PCR, respectively. Apoptosis was analyzed by TUNEL staining and caspase-3 expression in the liver. Downstream molecules of APN were investigated by Western blotting.

Results

Circulatory APN was down-regulated during liver I/R. When exogenous APN treatment was administered during liver I/R, alanine transaminase (ALT) and aspartate aminotransferase (AST) were decreased, and less hepatocyte necrosis was observed. Less inflammatory cell infiltration and pro-inflammatory cytokines/chemokines release were also observed in the I/R+APN group when compared with the I/R control group. APN treatment also reduced hepatocyte apoptosis, evidenced by reduced TUNEL positive cells and less caspase-3 expression in the reperfused liver. Finally, the AMPK/eNOS pathway was found to be activated by APN, and administration of an AMPK inhibitor reversed the beneficial effects of APN.

Conclusion

APN can protect the liver from I/R injury by reducing the inflammatory response and hepatocyte apoptosis, a process that likely involves the AMPK/eNOS pathway. The current study provides a potential pharmacologic target for liver I/R injury.  相似文献   

7.
It has been known that many immediately early genes are expressed during ischemia/reperfusion (I/R) injury. Here, employing a model of hepatic I/R, we show that inducible nitric oxide synthase (iNOS) is induced via the activation of nuclear factor kappaB (NF-kappaB) after I/R in rat liver. When liver was subjected to ischemia followed by reperfusion, but not ischemia alone, an NF-kappaB complex composed of p50/p65 heterodimer and p50 homodimer was rapidly activated within 1 h and remained elevated for up to 3 h, and then tended to decline after 5 h of reperfusion. Also, the expression of iNOS mRNA was initiated after 1 h and continued to increase after 5 h of reperfusion during the time course studied. This upregulated iNOS mRNA expression coincides with increased iNOS enzyme activity and NF-kappaB binding activity after hepatic I/R. Administration of N-acetylcysteine (NAC, 20 mg/kg i.v. 10 min before reperfusion), an antioxidant, not only significantly inhibited the expression of iNOS mRNA but also blocked upregulated NF-kappaB binding activity after reperfused liver. These results suggest that NF-kappaB is activated by oxidative stress during hepatic I/R and may play a significant role in the induction of the iNOS gene.  相似文献   

8.
Ischemia–reperfusion (IR) injury usually occurs during liver transplantation. Aquaporins (AQPs) are transmembrane channels that facilitate water permeability through cell membranes and are essential for the regulation of water homeostasis. Changes in the AQPs expression have been correlated with several inflammatory diseases. Less is known about AQPs expression in hepatic ischemia reperfusion injury. To clarify the roles of AQPs in IR injury, in this current study we examined the gene expression patterns of AQP1, 8 and 9 in the liver after IR injury. Male balb/c mice were exposed to partial (70%) hepatic ischemia for 65 min and then randomized into five groups of reperfusion [0 h (A), 8 h (B), 1 day (C), 3 days (D), and 7 days (E)]. A surgical group was also selected as the sham group. Serum and liver tissue samples were collected for evaluation of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and liver histopathology. Real time PCR was performed to evaluate the AQPs expression. I/R injury resulted in a significant increase in ALT and AST (p?<?0.05) compared to sham mice in each group. The gene expression of AQPs was significantly increased in the IR group compared with the sham group (p?<?0.05). AQP8 and AQP1 after 8 h (group B) showed the highest gene expression in comparison with other groups, but the highest level of AQP9 gene expression was observed after 1 day (group C). Pathologic changes in the liver after reperfusion were confirmed the IR. In the IR group cytoplasmic vacuolization, inflammatory cell infiltration and focal necrosis were detected. In conclusion, our findings indicated that the damage caused by ischemia–reperfusion in the liver can change the expression of AQP genes, which can interfere with hepatocellular homeostasis and their function. Upregulation of AQP1, 8 and 9 could contribute to the development of hepatocellular swelling after hepatic IR injury.  相似文献   

9.
10.
Effects of naltrexone on lipopolysaccharide-induced sepsis in rats   总被引:5,自引:0,他引:5  
Naltrexone, an opioid antagonist, has been reported to possess an anti-inflammatory effect via blockade of opioid receptor. The aim of this study is to evaluate the protective effect of naltrexone on LPS-induced septic shock in rats. Sepsis was induced by administration of LPS (10 mg/kg, i.v.) in anesthetized rats. Results demonstrated that pretreatment with naltrexone (10 mg/kg, i.v.) significantly ameliorated hypotension and bradycardia of rats 6 h after LPS administration. In isolated blood vessel, study showed that pretreatment with naltrexone significantly improved norepinephrine-induced vasoconstriction and ACh-induced vasorelaxation in aorta of endotoxemic animals. Naltrexone significantly reduced the elevation of serum glutamate-oxalacetate transaminase and glutamate-pyruvate transaminase (as index of hepatic function) induced by LPS. The infiltration of polymorphonuclear neutrophils into liver 48 h after LPS treatment in mice was also reduced by naltrexone. On the other hand, naltrexone significantly decreased the levels of plasma TNF- and inhibited overproduction of superoxide anions in aortic rings. However, naltrexone did not suppress the overproduction of NO (measured by its metabolites nitrite/nitrate in plasma) and iNOS expression in lungs induced by LPS. In in vitro study, naltrexone did not attenuate non-enzymatic iron-induced lipid peroxidation in rat brain homogenates. In conclusion, pretreatment with naltrexone significantly improved circulatory failure and hepatic dysfunction in sepsis. These effects were associated with reduction of TNF- levels and superoxide anion formation, which may be attributed to antagonism of opioid receptors.  相似文献   

11.
Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.  相似文献   

12.
It is well established that liver ischemia-reperfusion induces the expression of heat shock protein (HSP) 70. However, the biological function of HSP70 in this injury is unclear. In this study, we sought to determine the role of HSP70 in hepatic ischemia-reperfusion injury in mice. Male mice were subjected to 90 min of partial hepatic ischemia followed by up to 8 h of reperfusion. HSP70 was rapidly upregulated after reperfusion. To explore the function of HSP70, sodium arsenite (8 mg/kg iv) was injected before surgery. We found that this dose induced HSP70 expression within 6 h of treatment. Induction of HSP70 with arsenite resulted in a >50% reduction in liver injury as determined by serum transaminases and histology. In addition, arsenite similarly reduced liver neutrophil recruitment and liver nuclear factor-kappaB activation, and attenuated serum levels of tumor necrosis factor-alpha and macrophage inflammatory protein-2, but increased levels of interleukin (IL)-6. In HSP70 knockout mice, arsenite did not protect against liver injury but did reduce liver neutrophil accumulation. Arsenite-induced reductions in neutrophil accumulation in HSP70 knockout mice were found to be mediated by IL-6. To determine whether extracellular HSP70 contributed to the injury, recombinant HSP70 was injected before surgery. Intravenous injection of 10 microg of recombinant HSP70 had no effect on liver injury after ischemia-reperfusion. The data suggest that intracellular HSP70 is directly hepatoprotective during ischemia-reperfusion injury and that extracellular HSP70 is not a significant contributor to the injury response in this model. Targeted induction of HSP70 may represent a potential therapeutic option for postischemic liver injury.  相似文献   

13.
14.
Copper deficiency can cause a host of major cardiovascular complications including an augmented inflammatory response through effects on both neutrophils and the microvascular endothelium. In the present study, we evaluated the effect of marginal copper deficiency on the neutrophilic response to hepatic ischemia/reperfusion injury, a condition that induces an inflammatory response. Male weanling Sprague–Dawley rats were fed purified diets which were either copper-adequate (6.3 mg/kg) or copper-marginal (1.62 mg/kg) for 4 weeks prior to undergoing 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Liver injury was assessed by serum levels of alanine aminotransferase and by liver histology. Liver neutrophil accumulation was determined by tissue myeloperoxidase content. There was no significant difference in liver injury between copper-adequate and copper-marginal rats. However, liver neutrophil accumulation was significantly increased in copper-marginal rats. These findings were confirmed histologically. Liver expression of the adhesion molecule, intercellular adhesion molecule-1 (ICAM-1), was increased in copper-marginal rats compared to copper-adequate rats. The results suggest that neutrophil accumulation is increased through enhanced ICAM-1 expression in liver of copper-marginal rats after ischemia/reperfusion, but that this does not result in increased liver injury.  相似文献   

15.
We investigated the mechanism of exercise-induced late cardioprotection against ischemia-reperfusion (I/R) injury. C57BL/6 mice received treadmill exercise (60 min/day) for 7 days at a work rate of 60-70% maximal oxygen uptake. Exercise transiently increased oxidative stress and activated endothelial isoform of nitric oxide synthase (eNOS) during exercise and increased expression of inducible isoform of NOS (iNOS) in the heart after 7 days of exercise. The mice were subjected to regional ischemia by 30 min of occlusion of the left coronary artery, followed by 2 h of reperfusion. Infarct size was significantly smaller in the exercised mice. Ablation of cardiac sympathetic nerve by topical application of phenol abolished oxidative stress, activation of eNOS, upregulation of iNOS, and cardioprotection mediated by exercise. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine during exercise also inhibited activation of eNOS, upregulation of iNOS, and cardioprotection. In eNOS(-/-) mice, exercise-induced oxidative stress was conserved, but upregulation of iNOS and cardioprotection was lost. Exercise did not confer cardioprotection when the iNOS selective inhibitor 1400W was administered just before coronary artery occlusion or when iNOS(-/-) mice were employed. These results suggest that exercise stimulates cardiac sympathetic nerves that provoke redox-sensitive activation of eNOS, leading to upregulation of iNOS, which acts as a mediator of late cardioprotection against I/R injury.  相似文献   

16.
PNA+Tempol, albumin containing conjugated (polynitroxyl albumin; PNA) and free (4-hydroxyl-2,2,6,6-tetramethyl-piperidinyl-1-oxyl; Tempol) nitroxide may protect against injury caused by reactive oxygen species. Therefore, the actions of PNA+Tempol on liver injury and inflammation induced by hepatic ischemia and reperfusion (I/R) were examined. Rats were subjected to 1 h ischemia followed by 24 h reperfusion in the absence (I/R) or presence of PNA+Tempol (25%; 15 mL/kg, i.v.) (I/R+PNA+Tempol) or human serum albumin (23%; 13.5 mL/kg, i.v.) (I/R+HSA). Test solutions were administered prior to and for 2 h during reperfusion. Sham-operated rats underwent surgery with neither ischemia nor infusion. I/R+PNA+Tempol rats had significantly less liver injury and inflammation than I/R rats. I/R+PNA+Tempol livers exhibited focal lesions whereas I/R livers exhibited global necrosis. Likewise, plasma ALT activity was significantly lower in I/R+PNA+Tempol rats. PNA+Tempol reduced I/R-induced neutrophil accumulation and intercellular adhesion molecule-1 (ICAM-1) expression. HSA did not alter I/R-induced liver injury or inflammation. Sham-operated rats exhibited normal liver morphology and no inflammation. Attenuation of I/R liver injury by PNA+Tempol may be mediated by its effect on inflammation, the major contributor to I/R injury. Reduction of inflammation by PNA+Tempol is most likely due to the antioxidative nature of the nitroxides.  相似文献   

17.
目的:观察肢体缺血/再灌注(I/R)后一氧化氮/内皮素-1(NO/ET-1)失衡与肝损伤的关系以及缺血预适应(1pc)对NO/ET-1系统的调节作用。方法:实验用雄性Wistar大鼠18只,随机分为3组(n=6):对照组(control)、缺血/再灌注组(I/R)和缺血预适应组(IPC+I/R),分别测定血浆谷草转氨酶(ALT)、谷丙转氨酶(AST);血浆和肝组织一氧化氮(NO)、内皮素-1(ET-I)的含量变化,一氧化氮/内皮素-1(NO/ET-1)比值及肝组织的总一氧化氮合酶(tNOS)、诱导型一氧化氮合酶(iNOS)、结构型一氧化氮合酶(cNOS)的水平;免疫组化法检测肝组织的诱导型一氧化氮舍酶(iNOS)、内皮型一氧化氮合酶(eNOS)的表达;HE染色,在光学显微镜下观察肝组织的形态学改变。结果:发现肢体再灌注期血浆和肝组织NO、ET-1均明显增加,而NO/ET-1的比值却明显降低,同时血浆ALT、AST升高,光学显微镜下肝细胞、内皮细胞肿胀,肝细胞变性及肝窦淤血,炎性细胞浸润,肝损伤加重,肢体I/R后肝组织iNOS的表达增强,而eNOS(主要为eNOS)的表达减少,伴有总NOS活性增强。说明肢体缺血再灌注后肝组织内皮源的NO产生减少,而非内皮源的NO产生增多;IPC减轻了肢体I/R后引起的NO/ET-1失衡。结论:肢体I/R后肝组织损伤与NO/ET-1失衡有关,IPC对肢体I/R继发的肝组织损伤的保护作用可能是通过对NO/ET-1系统的调节作用而介导的,此时内皮源的NO产生增加,非内皮源的NO产生减少。  相似文献   

18.
Various mechanisms have been proposed for the pathogenesis of postischemic hepatic injury, including the generation of reactive oxygen metabolites. Oxytocin (OT) possesses antisecretory, antiulcer effects, facilitates wound healing and has anti-inflammatory properties. Hepatic ischemia-reperfusion (I/R)-injury was induced by inflow occlusion to median and left liver lobes ( approximately 70%) for 30 min of ischemia followed by 1h reperfusion in female Sprague-Dawley rats under anesthesia. I/R group (n=8) was administered intraperitoneally either OT (500 microg/kg) or saline at 24 and 12 h before I/R and immediately before reperfusion. Sham-operated group that underwent laparotomy without hepatic ischemia served as the control. Rats were decapitated at the end of reperfusion period. Hepatic samples were obtained for the measurement of myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH) and collagen levels and histopathological analysis. Tumor necrosis factor-alfa (TNF-alpha) and transaminases (SGOT, SGPT) were assayed in serum samples. I/R injury caused significant increases in hepatic microscopic damage scores, MPO activity, collagen levels, transaminase, serum TNF-alpha levels. Oxytocin treatment significantly reversed the I/R-induced elevations in serum transaminase and TNF-alpha levels and in hepatic MPO and collagen levels, and reduced the hepatic damage scores. OT treatment had tendency to abolish I/R-induced increase in MDA levels, while GSH levels were not altered. These results suggest that OT has a protective role in hepatic I/R injury and its protective effect in the liver appears to be dependent on its inhibitory effect on neutrophil infiltration.  相似文献   

19.
Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1β production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α′s RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号