首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The aim of the work was to analyze the telomerase activity (TA) in two different populations of pig granulosa cells (GC) proliferating and differentiating in vitro: (a) in relatively undifferentiated granulosa cells isolated from small (1-2 mm) antral follicles and (b) in functionally advanced, differentiated cells obtained from large (5-7 mm) antral follicles. The proliferative potential in vitro of small follicle granulosa cells (SF-GC) was higher than that of large follicle granulosa cells (LF-GC). EGF stimulated significantly (p<0.01) proliferation in SF-GC as well as LF-GC. FSH did not have a stimulating effect on proliferation in both of the GC populations. Steroidogenesis was induced in both SF- and LF-GC in vitro. Significantly higher (p<0.01) levels of estradiol were measured in LF-GC cultures. In SF-GC, no significantly different effects of EGF and FSH on estradiol production were found. The production of progesterone in vitro was higher in LF-GC than in SF-GC and its production was specifically promoted by FSH in contrast to estradiol the synthesis of which in vitro was less dependent on culture conditions. Using the TRAP assay telomerase activity was detected in freshly isolated and in vitro cultured pig SF- and LF-GC. In EGF, but not FSH stimulated SF-GC, significantly enhanced (p<0.05) TA in comparison with the control was observed at an interval of 24 h of culture. After the 48 h in vitro, levels of TA in both EGF and FSH treated cells were comparable with control. In LF-GC, both EGF and FSH stimulated significantly (p<0.05) TA after the 24h of in vitro culture. At an interval of 48 h, no significant differences in the level of TA were observed between control, EGF and FSH stimulated LF-GC. Comparing the levels of TA in SF- and LF-GC, significantly higher levels of TA were found in control (p<0.05) and EGF (p<0.01) treated SF-GC after 24 h in vitro. On the other hand, absolutely, but not significantly, higher levels of TA were found in LF-GC versus SF-GC in all culture conditions after 48 h in vitro.  相似文献   

4.
5.
The interdivisional times of Friend murine erythroleukaemia cells which are growing continuously, or during terminal erythroid differentiation after exposure to dimethyl sulphoxide (DMSO), were determined by time lapse video photography. The median interdivisional times were found to increase from 11.75 hr before exposure to DMSO, to 24.0 hr at 72 hr after exposure. This increase in median interdivisional time was accompanied by an increase in heterogeneity of interdivisional times (%CV = 8.5----40.8), by an increase in the similarity of sister interdivisional times (ryy = 0.622----0.925), and by a decrease in the fraction of cells observed to divide (F = 1.0----0.807). Cells exposed to DMSO for 72 hr can be induced to divide at least once with nearly normal interdivisional times, if they are resuspended at a tenfold higher cell concentration. Computer simulations of cell cycle regulation, based on the opposing reactions model of Murphy, generate interdivisional time distributions which resemble the experimental data better than the single transition probability model of Smith and Martin.  相似文献   

6.
7.
There is growing evidence suggesting that hepatic fat-storing cells (FSC) or Ito cells have an important function in vitamin A storage and metabolism and in the synthesis of connective tissue components in normal liver and during fibrogenesis. The purified FSC acquire a fibroblastic morphology and their vitamin A content decreases in culture. We cultivated cells under in vitro conditions that allowed the expression of FSC morphological and functional characteristics for 3–4 weeks of primary culture. Cells were isolated from rat liver by the collagenase-perfusion method without further purification and cultured with 3T3-conditioned medium, which seemed to stimulate the selective proliferation of the FSC. After 8–10 days, round and stellate cells grew actively from a few precursor cells in the primary culture and were not subcultivated; the stellate cells had the ability to become round and vice versa and were highly motile. The cells had intracytoplasmic lipid droplets, a well developed rough endoplasmic reticulum, Golgi complex, numerous vesicles filled with electron-dense material, and extracellular matrix (ECM) components on their surface. Both stellate and round cells showed the presence of desmin by immunofluorescence and vitamin A autofluorescence, but lacked peroxidase activity. The culture conditions we describe allowed the selective proliferation of cells with morphological and functional characteristics of the FSC in the normal liver, raising the possibility of studying FSC proliferation and differentiation.  相似文献   

8.
9.
10.
32D cells are murine myeloid cells that grow indefinitely in Interleukin-3 (IL-3). In these cells, the type 1 insulin-like growth factor (IGF-I) and granulocytic-colony stimulating factor (G-CSF) induce differentiation to granulocytes. 32D cells do not express insulin receptor substrate-1 (IRS-1) or IRS-2, docking proteins of the IGF-I receptor. Ectopic expression of IRS-1 in these cells inhibits differentiation, the cells become IL-3 independent and IGF-1 dependent and can form tumors in mice. 32D and 32D-derived cells offer a good model in which to study the expression profiles of Micro Rna (miR) related to sustained proliferation or differentiation. We present here the data obtained with miR micro-arrays and identify the miR that are regulated by IGF-1 or G-CSF and are associated with either differentiation or indefinite cell proliferation of 32D murine myeloid cells.  相似文献   

11.
Temporal variations in the expression of the ras oncogene, and its protein product, were investigated during hexamethylene bisacetamide (HMBA)-induced differentiation of murine erythroleukaemic (MEL) cells. We highlight the fact that when comparisons were made between untreated, proliferating cells and HMBA-treated, differentiating cells using only one time-point, differences, both for the expression of the gene and the protein, were in most cases insignificant; standard deviations were high and the interpretation could be made that HMBA had little effect. Such interpretation fails to take account of the dynamic nature of the system, with single time-point studies giving incomplete information, which can be misleading. Multiple time analyses showed clearly that rhythmic patterns of expression were modulated by the differentiating agent. Time-dependent changes in the expression of mRNA specific to H- ras and N- ras, as well as in the expression of the Ras protein, when measured over periods of minutes or hours, were apparent. HMBA affected frequency and phasing of the rhythms. Regulation of the dynamics in this way may be crucial to the control of cell function and transformation.  相似文献   

12.
W Du  J E Xie    N Dyson 《The EMBO journal》1996,15(14):3684-3692
The deregulation of E2F activity is thought to contribute to the uncontrolled proliferation of many tumor cells. While the effects of overexpressing E2F genes have been studied extensively in tissue culture, the consequences of elevating E2F activity in vivo are unknown. To address this issue, transgenic lines of Drosophila were studied in which ectopic expression of dE2F and dDP was targeted to the developing eye. The co-expression of dDP or dE2F disrupted normal eye development, resulting in abnormal patterns of bristles, cone cells and photoreceptors. dE2F/dDP expression caused ectopic S phases in post-mitotic cells of the eye imaginal disc but did not disrupt the onset of neuronal differentiation. Most S phases were seen in uncommitted cells, although some cells that had initiated photo-receptor differentiation were also driven into the cell cycle. Elevated expression of dE2F and dDP caused apoptosis in the eye disc. The co-expression of baculovirus p35 protein, an inhibitor of cell death, strongly enhanced the dE2F/dDP-dependent phenotype. These results show that, in this in vivo system, the elevation of E2F activity caused post-mitotic cells to enter the cell cycle. However, these cells failed to proliferate unless rescued from apoptosis.  相似文献   

13.
Evidence indicating a very short duration of the post-mitotic G1 phase of PHA-stimulated lymphocytes was obtained in experiments where proliferating lymphocytes were pulsed for 1 h with 3H-TdR and then, following different periods of incubation in ‘cold’ medium, again pulsed for 1 h with 14C-TdR. Cells labelled with 3H-and (3H + 14C)-TdR were counted in double layer autoradiograms. Cells labelled with 3H-TdR should gradually leave the S phase when incubated in ‘cold’ medium and would consequently not incorporate 14C-TdR. Thus, the quotient
%(3H + 14C) cells%3H + %(3H + 14C) cells
should decrease with time in ‘cold’ medium and should be zero after an incubation time corresponding to the length of the S phase. If, however, the sum of the G2 + M + G1 phases is shorter than the length of the S phase, the zero value will not be obtained. This was actually the case, and the quotients obtained agreed well with those that could be calculated on basis of the G1 period being 0 h, whereas they did not agree with those calculated on basis of G1 being 4–6 h.  相似文献   

14.
By using affinity-purified antibodies to H10 and to H1AB the localization of these histones was studied by indirect immunofluorescence in the nuclei of proliferating (EAT and uninduced Friend cells) and of differentiating (induced Friend cells) cell populations. While with H1AB antibodies a bright fluorescence all over the chromatin was obtained, the localization of H10 varied depending on the state of the cell population. In the proliferating EAT cells it was localized strictly in the nucleoli. The Friend cell population revealed a heterogeneous picture with two types of H10 localization-nucleolar predominating in uninduced cell populations and peripheral predominating in induced cells. A comparison with literature data suggests that H10 seems to be associated with chromatin regions containing active genes.  相似文献   

15.
16.
Rhythmic changes in the expression of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) were investigated during hexamethylene bisacetamide (HMBA) induced differentiation of murine erythroleukaemic (MEL) cells. Cell extracts were analysed by SDS-PAGE and western immunoblotting using specific antibodies. An immunospecific band of molecular mass 36 kDa (catalytic subunit) was detected for PP1. For PP2A, two immunospecific bands of 32 kDa (proteolytically cleaved catalytic subunit) and 36 kDa (catalytic subunit) were observed. Comparisons of proliferating and differentiating cells using only one time point showed no significant differences between mean values for the expression of the PP1 or PP2A enzyme proteins. This kind of analysis, implying that HMBA had little effect, proved misleading, as comparisons using multiple time points showed rhythmic patterns of protein expression which were modulated by the differentiating agent. The effects were complex affecting both the frequency and phasing of rhythms. The results add further support for the view that live cells are multi-oscillators and for the concept that differentiation depends on changes in temporal organization of complex autodynamic feedback loops and multiple interactions between control circuits performing in parallel. In particular, modulation of the dynamics of key proteins, such as PP1 and PP2A, may be a possible mechanism for controlling cellular function and reversing transformation in accordance with long standing theoretical and other experimental data.  相似文献   

17.
18.
F9 embryonal carcinoma cells (F9EC) can be induced to differentiate in vitro into epithelial cells expressing keratin 8 (K8) and keratin 18 (K18). cDNAs corresponding to K8 and K18 mRNAs were cloned and used to study the change in the abundance of these mRNAs during differentiation of F9 cells into parietal endoderm-like cells by treatment with retinoic acid (RA) or with RA and dibutyryl cAMP (Bt2cAMP). Using an RNase protection assay, it was determined that K8 mRNA was induced slightly before K18 mRNA and that it accumulated to a greater extent than K18 mRNA. Furthermore, differentiation in presence of Bt2cAMP plus RA resulted in an earlier induction of the two mRNAs and a higher level of expression of K8 mRNA. These results indicate that K8 and K18 mRNAs are regulated differently in F9 cells.  相似文献   

19.
20.
To identify and study genes essential for vertebrate retinal development, we are screening zebrafish embryos for mutations that disrupt retinal histogenesis. Key steps in retinogenesis include withdrawal from mitosis by multipotent neuroepithelial cells, specification to particular cell types, migration to the appropriate laminar positions, and molecular and morphological differentiation. In this study, we have identified two recessive mutations that affect the transition of proliferating neuroepithelial cells to postmitotic retinal cells. Both the perplexed and confused mutant phenotypes were initially detectable when the first retinal neuroepithelial cells began to leave the cell cycle. At this time, each mutant retina showed increased cell death and a lack of morphological differentiation. Cell death was found to be apoptotic in both perplexed and confused retinas based on TUNEL analysis and activation of caspase-3. TUNEL-phosphoRb-BrdU colocalization studies indicated that the perplexed mutation caused death in cells transitioning from a proliferative to postmitotic state. For the confused mutation, TUNEL-phosphoRb-BrdU analysis revealed that only a subset of postmitotic cells were induced to activate apoptosis. Mosaic analysis demonstrated that within the retina the perplexed mutation functions noncell-autonomously. Furthermore, whole lens or eye cup transplantations indicated that the retinal defect was intrinsic to the retina. Mosaic analysis with confused embryos showed this mutation acts cell-autonomously. From these studies, we conclude that the perplexed and confused genes are essential at distinct stages during the transition from proliferating to postmitotic cells within the zebrafish retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号