首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain.  相似文献   

2.
Nitric oxide synthase (NOS) has an oxygenase domain with a thiol-coordinated heme active side similar to cytochrome P450. In contrast to cytochrome P450, however, conserved aromatic amino acids are situated in the heme proximal side of NOS. For example, in endothelial NOS (eNOS), the indole-ring nitrogen of Trp180 hydrogen-binds to the thiol of Cys186, the internal axial ligand to the heme. And, the aromatic side chain of Trp192 forms a bridge between this residue and the protein. Trp180 and Trp192 of eNOS correspond to Trp409 and Trp421 of neuronal NOS (nNOS), respectively. In order to understand the roles of the aromatic amino acids in catalysis, we generated Trp409His, Trp409Leu, Trp421His and Trp421Leu mutants of nNOS and determined their catalytic parameters. The Trp409Leu mutant was very poorly expressed in E. coli and was easily denatured during purification procedures. The NO formation activities of the Trp409His and Trp421Leu mutants were 11 and 25 micromol/min per micromol heme, respectively, and are lower than that (44 micromol/min per micromol heme) of the wild type. The activity (46 micromol/min per micromol heme) of the Trp421His mutant was comparable to that of the wild-type enzyme. However, NADPH oxidation rates of Trp421His (230 micromol/min per micromol heme) and Trp421Leu (104 micromol/min per microol heme) in the presence of L-Arg were much larger than those observed for the wild type (65 micromol/min per micromol heme) and the Trp409His mutant (43 micromol/min per micromol heme). The cytochrome c reduction rate of the Trp421His mutant was 6-fold larger than that of the wild type. The heme reduction rate with NADPH for the Trp421His mutant (0.09 min(-1)) was much lower than that (1.0 min(-1)) of the wild type. Taken together, it appears that Trp421 may be involved in inter-domain/inter-subunit electron transfer reactions.  相似文献   

3.
Nitric oxide (NO) is synthesized from L-Arg in the P450-type heme active site of nitric-oxide synthase (NOS). The internal axial ligand of the heme, Cys415, may hydrogen-bond to the side chain of the conserved Arg418 residue in neuronal NOS (nNOS). To understand the role of Arg418, we generated the nNOS mutants, Arg418Ala and Arg418Leu. NO formation activities with the mutants using both L-Arg and NHA as substrates were less than 0.1 nmol/min/nmol heme, in contrast to rates of 34-35 nmol/min/nmol heme with the wild-type enzyme. The heme reduction rate of the mutants was very slow, less than 10(-2) min(-1), in contrast with that (more than 10 min(-1)) of the wild type. The backbone amide group of Arg418 interacts with the Cys415 thiolate through van der Waals contact, whereas the carbonyl oxygen of Cys415 and the guanidino N(epsilon) atom of Arg418 form a tight hydrogen bond. The results suggest that Arg418 is critical in preserving the heme proximal structure and thus, is indirectly involved in both catalysis and electron transfer from the reductase domain to the heme.  相似文献   

4.
Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing l ‐Arg to NO and L‐citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH‐derived electrons are transferred to the heme‐containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN‐to‐heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme–FMN–calmodulin NOS complex based on the recent biophysical studies using a 105‐ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis.  相似文献   

5.
Neuronal nitric oxide synthase (nNOS) is composed of an oxygenase domain that binds heme, (6R)-tetrahydrobiopterin, and Arg, coupled to a reductase domain that binds FAD, FMN, and NADPH. Activity requires dimeric interaction between two oxygenase domains and calmodulin binding between the reductase and oxygenase domains, which triggers electron transfer between flavin and heme groups. We constructed four different nNOS heterodimers to determine the path of calmodulin-induced electron transfer in a nNOS dimer. A predominantly monomeric mutant of rat nNOS (G671A) and its Arg binding mutant (G671A/E592A) were used as full-length subunits, along with oxygenase domain partners that either did or did not contain the E592A mutation. The E592A mutation prevented Arg binding to the oxygenase domain in which it was present. It also prevented NO synthesis when it was located in the oxygenase domain adjacent to the full-length subunit. However, it had no effect when present in the full-length subunit (i.e. the subunit containing the reductase domain). The active heterodimer (G671A/E592A full-length subunit plus wild type oxygenase domain subunit) showed remarkable similarity with wild type homodimeric nNOS in its catalytic responses to five different forms and chimeras of calmodulin. This reveals an active involvement of calmodulin in supporting transelectron transfer between flavin and heme groups on adjacent subunits in nNOS. In summary, we propose that calmodulin functions to properly align adjacent reductase and the oxygenase domains in a nNOS dimer for electron transfer between them, leading to NO synthesis by the heme.  相似文献   

6.
Nitric oxide (NO) plays diverse roles in mammalian physiology. It is involved in blood pressure regulation, neurotransmission, and immune response, and is generated through complex electron transfer reactions catalyzed by NO synthases (NOS). In neuronal NOS (nNOS), protein domain dynamics and calmodulin binding are implicated in regulating electron flow from NADPH, through the FAD and FMN cofactors, to the heme oxygenase domain, the site of NO generation. Simple models based on crystal structures of nNOS reductase have invoked a role for large scale motions of the FMN-binding domain in shuttling electrons from the FAD-binding domain to the heme oxygenase domain. However, molecular level insight of the dynamic structural transitions in NOS enzymes during enzyme catalysis is lacking. We use pulsed electron-electron double resonance spectroscopy to derive inter-domain distance relationships in multiple conformational states of nNOS. These distance relationships are correlated with enzymatic activity through variable pressure kinetic studies of electron transfer and turnover. The binding of NADPH and calmodulin are shown to influence interdomain distance relationships as well as reaction chemistry. An important effect of calmodulin binding is to suppress adventitious electron transfer from nNOS to molecular oxygen and thereby preventing accumulation of reactive oxygen species. A complex landscape of conformations is required for nNOS catalysis beyond the simple models derived from static crystal structures of nNOS reductase. Detailed understanding of this landscape advances our understanding of nNOS catalysis/electron transfer, and could provide new opportunities for the discovery of small molecule inhibitors that bind at dynamic protein interfaces of this multidimensional energy landscape.  相似文献   

7.
Nitric oxide synthases (NOSs) produce NO as a molecular signal in the nervous and cardiovascular systems and as a cytotoxin in the immune response. NO production in the constitutive isoforms is controlled by calmodulin regulation of electron transfer. In the tethered shuttle model for NOS reductase function, the FMN domain moves between NADPH dehydrogenase and oxygenase catalytic centers. Crystal structures of neuronal NOS reductase domain and homologs correspond to an 'input state', with FMN in close contact with FAD. We recently produced two domain 'output state' (oxyFMN) constructs showing calmodulin dependent FMN domain association with the oxygenase domain. FMN fluorescence is sensitive to enzyme conformation and calmodulin binding. The inducible NOS (iNOS) oxyFMN construct is more fluorescent than iNOS holoenzyme. The difference in steady state fluorescence is rationalized by the observation of a series of characteristic states in the two constructs, which we assign to FMN in different environments. OxyFMN and holoenzyme share open conformations with an average lifetime of ~4.3 ns. The majority state in holoenzyme has a short lifetime of ~90 ps, probably because of FAD-FMN interactions. In oxyFMN about 25-30% of the FMN is in a state with a lifetime of 0.9 ns, which we attribute to quenching by heme in the output state. Occupancy of the output state together with our previous kinetic results yields a heme edge to FMN distance estimate of 12-15 ?. These results indicate that FMN fluorescence is a valuable tool to study conformational states involved in the NOS reductase catalytic cycle.  相似文献   

8.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

9.
Konas DW  Takaya N  Sharma M  Stuehr DJ 《Biochemistry》2006,45(41):12596-12609
Nitric oxide synthases (NOS) are flavoheme enzymes with important roles in biology. The reductase domain of neuronal NOS (nNOSr) contains a widely conserved acidic residue (Asp(1393)) that is thought to facilitate hydride transfer between NADPH and FAD. Previously we found that the D1393V and D1393N mutations lowered the NO synthesis activity and the rates of heme and flavin reduction in full-length nNOS. To examine the mechanisms for these results in greater detail, we incorporated D1393V and D1393N substitutions into nNOSr along with a truncated NADPH-FAD domain construct (FNR) and characterized the mutants. D1393V nNOSr had markedly lower (相似文献   

10.
Neuronal nitric-oxide synthase (nNOS or NOS I) and endothelial NOS (eNOS or NOS III) differ widely in their reductase and nitric oxide (NO) synthesis activities, electron transfer rates, and propensities to form a heme-NO complex during catalysis. We generated chimeras by swapping eNOS and nNOS oxygenase domains to understand the basis for these differences and to identify structural elements that determine their catalytic behaviors. Swapping oxygenase domains did not alter domain-specific catalytic functions (cytochrome c reduction or H(2)O(2)-supported N(omega)-hydroxy-l-arginine oxidation) but markedly affected steady-state NO synthesis and NADPH oxidation compared with native eNOS and nNOS. Stopped-flow analysis showed that reductase domains either maintained (nNOS) or slightly exceeded (eNOS) their native rates of heme reduction in each chimera. Heme reduction rates were found to correlate with the initial rates of NADPH oxidation and heme-NO complex formation, with the percentage of heme-NO complex attained during the steady state, and with NO synthesis activity. Oxygenase domain identity influenced these parameters to a lesser degree. We conclude: 1) Heme reduction rates in nNOS and eNOS are controlled primarily by their reductase domains and are almost independent of oxygenase domain identity. 2) Heme reduction rate is the dominant parameter controlling the kinetics and extent of heme-NO complex formation in both eNOS and nNOS, and thus it determines to what degree heme-NO complex formation influences their steady-state NO synthesis, whereas oxygenase domains provide minor but important influences. 3) General principles that relate heme reduction rate, heme-NO complex formation, and NO synthesis are not specific for nNOS but apply to eNOS as well.  相似文献   

11.
The nitric oxide synthases (NOSs) consist of a flavin-containing reductase domain, linked to a heme-containing oxygenase domain, by a calmodulin (CaM) binding sequence. The flavin-containing reductase domains of the NOS isoforms possess close sequence homology to NADPH-cytochrome P450 reductase (CPR). Additionally, the oxygenase domains catalyze monooxygenation of L-arginine through a cytochrome P450-like cysteine thiolate-liganded heme bound in the active site. With these considerations in mind, we conducted studies in an attempt to gain insight into the intermediates involved in flavoprotein-to-heme electron transfer in the NOSs. Static, steady-state, and stopped-flow kinetic studies indicated that nNOS must be reduced to a more than one-electron-reduced intermediate before efficient electron transfer can occur. Therefore, the possibility exists that the oxygenase domains of the NOS isoforms may receive their electrons from the reductase domains by a mechanism resembling the CPR-P450 interaction. Furthermore, the rate-limiting step in electron transfer appears to be the transfer of electrons from the flavoprotein to the oxygenase domain facilitated by the binding of CaM at increased intracellular Ca(2+) concentrations. Thus, modulation of electron transfer rates appears to be regulated at the level of the flavoprotein domains of the NOS isoforms.  相似文献   

12.
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7, 8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676), Trp(678), Phe(691), His(692), and Tyr(706), together with the neighboring Arg(414) residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH. Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/l-Arg binding and/or electron transfer to the heme from NADPH. The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC(50) value for H4B (30-40-fold of wild type). The Tyr(706) phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Arg(414) to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH. Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/l-Arg binding and/or efficient electron transfer to occur.  相似文献   

13.
Mammalian nitric-oxide synthases are large modular enzymes that evolved from independently expressed ancestors. Calmodulin-controlled isoforms are signal generators; calmodulin activates electron transfer from NADPH through three reductase domains to an oxygenase domain. Structures of the reductase unit and its homologs show FMN and FAD in contact but too isolated from the protein surface to permit exit of reducing equivalents. To study states in which FMN/heme electron transfer is feasible, we designed and produced constructs including only oxygenase and FMN binding domains, eliminating strong internal reductase complex interactions. Constructs for all mammalian isoforms were expressed and purified as dimers. All synthesize NO with peroxide as the electron donor at rates comparable with corresponding oxygenase constructs. All bind cofactors nearly stoichiometrically and have native catalytic sites by spectroscopic criteria. Modest differences in electrochemistry versus independently expressed heme and FMN binding domains suggest interdomain interactions. These interactions can be convincingly demonstrated via calmodulin-induced shifts in high spin ferriheme EPR spectra and through mutual broadening of heme and FMNH. radical signals in inducible nitric-oxide synthase constructs. Blue neutral FMN semiquinone can be readily observed; potentials of one electron couple (in inducible nitric-oxide synthase oxygenase FMN, FMN oxidized/semiquinone couple = +70 mV, FMN semiquinone/hydroquinone couple = -180 mV, and heme = -180 mV) indicate that FMN is capable of serving as a one electron heme reductant. The construct will serve as the basis for future studies of the output state for NADPH derived reducing equivalents.  相似文献   

14.
Nitric-oxide synthase (NOS) is composed of a C-terminal, flavin-containing reductase domain and an N-terminal, heme-containing oxidase domain. The reductase domain, similar to NADPH-cytochrome P450 reductase, can be further divided into two different flavin-containing domains: (a) the N terminus, FMN-containing portion, and (b) the C terminus FAD- and NADPH-binding portion. The crystal structure of the FAD/NADPH-containing domain of rat neuronal nitric-oxide synthase, complexed with NADP(+), has been determined at 1.9 A resolution. The protein is fully capable of reducing ferricyanide, using NADPH as the electron donor. The overall polypeptide fold of the domain is very similar to that of the corresponding module of NADPH-cytochrome P450 oxidoreductase (CYPOR) and consists of three structural subdomains (from N to C termini): (a) the connecting domain, (b) the FAD-binding domain, and (c) the NADPH-binding domain. A comparison of the structure of the neuronal NOS FAD/NADPH domain and CYPOR reveals the strict conservation of the flavin-binding site, including the tightly bound water molecules, the mode of NADP(+) binding, and the aromatic residue that lies at the re-face of the flavin ring, strongly suggesting that the hydride transfer mechanisms in the two enzymes are very similar. In contrast, the putative FMN domain-binding surface of the NOS protein is less positively charged than that of its CYPOR counterpart, indicating a different nature of interactions between the two flavin domains and a different mode of regulation in electron transfer between the two flavins involving the autoinhibitory element and the C-terminal 33 residues, both of which are absent in CYPOR.  相似文献   

15.
The binding of calcium/calmodulin stimulates electron transfer between the reductase and oxygenase domains of neuronal nitric oxide synthase (nNOS). Here, we demonstrate using electron spin resonance spin-trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide that pterin-free nNOS generates superoxide from the reductase and the oxygenase domain by a calcium/calmodulin-dependent mechanism. Tetrahydrobiopterin (BH(4)) diminishes the formation of superoxide by a mechanism that does not cause inhibition of NADPH consumption. In contrast, BH(4) analogs 7,8-dihydrobiopterin and sepiapterin do not affect superoxide yields. L-Arginine alone inhibits the generation of superoxide by nNOS but not by C331A-nNOS mutant that has a low affinity for L-arginine. A greater decrease in superoxide yields is observed when nNOS is preincubated with L-arginine. This effect is in accordance with the slow binding rates of L-arginine to NOS in the absence of BH(4). L-Arginine alone or in combination with BH(4) decreases the rates of NADPH consumption. The effect of L-arginine on superoxide yields, however, was less dramatic than that caused by BH(4) as much higher concentrations of L-arginine are necessary to attain the same inhibition. In combination, L-arginine and BH(4) inhibit the formation of superoxide generation and stimulate the formation of L-citrulline. We conclude that, in contrast to L-arginine, BH(4) does not inhibit the generation of superoxide by controlling electron transfer through the enzyme but by stimulating the formation of the heme-peroxo species.  相似文献   

16.
A tryptic peptide of heme oxygenase obtained after solubilization of rat liver microsomes by mild trypsin treatment was purified. The purified peptide gave only a single protein band with a molecular mass of 28 kDa on SDS/PAGE. The tryptic peptide, like the native heme oxygenase, readily bound with substrate heme forming a hemeprotein transiently. The absorption spectra of the ferric, ferrous, ferrous-CO and ferrous-O2 forms of the resulting complex resembled those of the corresponding forms of the complex of heme and the native enzyme. Ferric heme bound to the tryptic peptide was quantitatively decomposed to biliverdin on incubation with a mixture of ascorbic acid and desferrioxamine, indicating that the tryptic peptide still retained catalytic activity. These observations suggest that heme oxygenase has two domains, a hydrophilic and a hydrophobic domain, and that the two domains are folded almost independently of each other. An NADPH-cytochrome-P-450 reductase system composed of NADPH and detergent-solubilized NADPH-cytochrome-P-450 reductase readily reduced the ferric heme bound to the tryptic peptide, but failed to transfer the second electron required for rapid heme degradation, suggesting that the hydrophobic domain of heme oxygenase is important for receiving the second electron from the reductase.  相似文献   

17.
Nitric-oxide synthase (NOS) is a fusion protein composed of an oxygenase domain with a heme-active site and a reductase domain with an NADPH binding site and requires Ca(2+)/calmodulin (CaM) for NO formation activity. We studied NO formation activity in reconstituted systems consisting of the isolated oxygenase and reductase domains of neuronal NOS with and without the CaM binding site. Reductase domains with 33-amino acid C-terminal truncations were also examined. These were shown to have faster cytochrome c reduction rates in the absence of CaM. N(G)-hydroxy-l-Arg, an intermediate in the physiological NO synthesis reaction, was found to be a viable substrate. Turnover rates for N(G)-hydroxy-l-Arg in the absence of Ca(2+)/CaM in most of the reconstituted systems were 2.3-3.1 min(-1). Surprisingly, the NO formation activities with CaM binding sites on either reductase or oxygenase domains were decreased dramatically on addition of Ca(2+)/CaM. However, NADPH oxidation and cytochrome c reduction rates were increased by the same procedure. Activation of the reductase domains by CaM addition or by C-terminal deletion failed to increase the rate of NO synthesis. Therefore, both mechanisms appear to be less important than the domain-domain interaction, which is controlled by CaM binding in wild-type neuronal NOS, but not in the reconstituted systems.  相似文献   

18.
In neuronal nitric-oxide synthase (nNOS), calmodulin (CaM) binding is thought to trigger electron transfer from the reductase domain to the heme domain, which is essential for O(2) activation and NO formation. To elucidate the electron-transfer mechanism, we characterized a series of heterodimers consisting of one full-length nNOS subunit and one oxygenase-domain subunit. The results support an inter-subunit electron-transfer mechanism for the wild type nNOS, in that electrons for catalysis transfer in a Ca(2+)/CaM-dependent way from the reductase domain of one subunit to the heme of the other subunit, as proposed for inducible NOS. This suggests that the two different isoforms form similar dimeric complexes. In a series of heterodimers containing a Ca(2+)/CaM-insensitive mutant (delta40), electrons transferred from the reductase domain to both hemes in a Ca(2+)/CaM-independent way. Thus, in the delta40 mutant electron transfer from the reductase domains to the heme domains can occur via both inter-subunit and intra-subunit mechanisms. However, NO formation activity was exclusively linked to inter-subunit electron transfer and was observed only in the presence of Ca(2+)/CaM. This suggests that the mechanism of activation of nNOS by CaM is not solely dependent on the activation of electron transfer to the nNOS hemes but may involve additional structural factors linked to the catalytic action of the heme domain.  相似文献   

19.
Structure-function studies on nitric oxide synthases   总被引:6,自引:0,他引:6  
Nitric oxide synthase (NOS) catalyzes the oxidation of one l-arginine guanidinium N atom to nitric oxide (NO). NOS consists of a heme domain linked to a flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD) reductase that shuttles electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the heme. This review summarizes various aspects of NOS structure and function derived from crystal structures coupled with a wealth of biochemical and biophysical data. This includes the binding of diatomic ligands, especially the product, NO, whose binding to the heme iron blocks enzyme activity. An unusual feature of NOS catalysis is the strict requirement for the essential cofactor, tetrahydrobiopterin (H4B). It now is generally agreed that H4B serves as an electron donor to the heme-oxy complex. The reason NOS may have recruited H4B as an electron transfer cofactor is to provide rapid coupled proton/electron transfer required for O2 activation. NOS is a highly regulated enzyme which is controlled by calmodulin (CaM) at the level of electron transfer within the FMN/FAD reductase and between the reductase and heme domains. Recent crystal structures provide a basis for developing models on the structural underpinnings of NOS regulation. In addition to the complex and fascinating functional and regulatory features of NOS, NOS is an important therapeutic target. Crystal structures have revealed the structural basis of isoform-selective inhibition by a group of dipeptide inhibitors which opens the way for structure-based inhibitor design.  相似文献   

20.
In nitric-oxide synthases (NOSs), two flexible hinges connect the FMN domain to the rest of the enzyme and may guide its interactions with partner domains for electron transfer and catalysis. We investigated the role of the FMN-FAD/NADPH hinge in rat neuronal NOS (nNOS) by constructing mutants that either shortened or lengthened this hinge by 2, 4, and 6 residues. Shortening the hinge progressively inhibited electron flux through the calmodulin (CaM)-free and CaM-bound nNOS to cytochrome c, whereas hinge lengthening relieved repression of electron flux in CaM-free nNOS and had no impact or slowed electron flux through CaM-bound nNOS to cytochrome c. How hinge length influenced heme reduction depended on whether enzyme flavins were pre-reduced with NADPH prior to triggering heme reduction. Without pre-reduction, changing the hinge length was deleterious; with pre-reduction, the hinge shortening was deleterious, and hinge lengthening increased heme reduction rates beyond wild type. Flavin fluorescence and stopped-flow kinetic studies on CaM-bound enzymes suggested hinge lengthening slowed the domain-domain interaction needed for FMN reduction. All hinge length changes lowered NO synthesis activity and increased uncoupled NADPH consumption. We conclude that several aspects of catalysis are sensitive to FMN-FAD/NADPH hinge length and that the native hinge allows a best compromise among the FMN domain interactions and associated electron transfer events to maximize NO synthesis and minimize uncoupled NADPH consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号