首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simulation of the double limb support phase of human gait   总被引:1,自引:0,他引:1  
Dynamic mechanical models of the double limb support phase of human gait were developed for both two-dimensional (sagittal plane) and three-dimensional motion. A "foot" model with a curved plantar surface was also developed such that the model foot motion was kinematically equivalent to that of a walking subject. This foot model was incorporated into the planar model for double limb support. The dynamic formulations were based on Kane's method and were implemented symbolically using MACSYMA. The development of the formulations for the constrained systems, application of these formulations to the study of normal gait, the sensitivity of the simulation to the frequency content of the input data, the sensitivity of limb displacements to changes in joint moments and the application of a nonlinear feedback controller to correct for perturbations in limb trajectories were investigated.  相似文献   

2.
When the foot impacts the ground in running, large forces and loading rates can arise that may contribute to the development of overuse injuries. Investigating which biomechanical factors contribute to these impact loads and loading rates in running could assist clinicians in developing strategies to reduce these loads. Therefore, the goals of our work were to determine variables that predict the magnitude of the impact peak and loading rate during running, as well as to investigate how modulation of knee and hip muscle activity affects these variables. Instrumented gait analysis was conducted on 48 healthy subjects running at 3.3 m/s on a treadmill. The top four predictors of loading rate and impact peak were determined using a stepwise multiple linear regression model. Forward dynamics was performed using a whole body musculoskeletal model to determine how increased muscle activity of the knee flexors, knee extensors, hip flexors, and hip extensors during swing altered the predictors of loading rate and impact peak. A smaller impact peak was associated with a larger downward acceleration of the foot, a higher positioned foot, and a decreased downward velocity of the shank at mid-swing while a lower loading rate was associated with a higher positioned thigh at mid-swing. Our results suggest that an alternative to forefoot striking may be increased hip flexor activity during swing to alter these mid-swing kinematics and ultimately decrease the leg's velocity at landing. The decreased velocity would decrease the downward momentum of the leg and hence require a smaller force at impact.  相似文献   

3.
It is unclear to what extent ballistic walking models can be used to qualitatively predict the swing phase at comfortable walking speed. Different study findings regarding the accuracy of the predictions of the swing phase kinematics may have been caused by differences in (1) kinematic input, (2) model characteristics (e.g. the number of segments), and (3) evaluation criteria. In the present study, the predictive validity of four ballistic swing phase models was evaluated and compared, that is, (1) the ballistic walking model as originally introduced by Mochon and McMahon, (2) an extended version of this model in which heel-off of the stance leg is added, (3) a double pendulum model, consisting of a two-segment swing leg with a prescribed hip trajectory, and (4) a shank pendulum model consisting of a shank and rigidly attached foot with a prescribed knee trajectory. The predictive validity was evaluated by comparing the outcome of the model simulations with experimentally derived swing phase kinematics of six healthy subjects. In all models, statistically significant differences were found between model output and experimental data. All models underestimated swing time and step length. In addition, statistically significant differences were found between the output of the different models. The present study shows that although qualitative similarities exist between the ballistic models and normal gait at comfortable walking speed, these models cannot adequately predict swing phase kinematics.  相似文献   

4.
It has historically been believed that the role of arm motion during walking is related to balancing. Arm motion during natural walking is distinguished in that each arm swing is with the motion of the opposing leg. Although this arm swing motion is generated naturally during bipedal walking, it is interesting to note that the arm swing motion is not necessary for stable walking. This paper attempts to explain the contribution of out-of-phase arm swing in human bipedal walking. Consequently, a human motion control methodology that generates this arm swing motion during walking is proposed. The relationship between arm swing and reaction moment about the vertical axis of the foot is explained in the context of the dynamics of a multi-body articulated system. From this understanding, it is reasoned that arm swing is the result of an effort to reduce the reaction moment about the vertical axis of the foot while the torso and legs are being controlled. This idea is applied to the generation of walking motion. The arm swing motion can be generated, not by designing and tracking joint trajectories of the arms, but by limiting the allowable reaction moment at the foot and minimizing whole-body motion while controlling the lower limbs and torso to follow the designed trajectory. Simulation results, first with the constraint on the foot vertical axis moment and then without, verify the relationship between arm swing and foot reaction moment. These results also demonstrate the use of the dynamic control method in generating arm swing motion.  相似文献   

5.
In this study, designed to determine the effect of lower extremity inertia manipulation on joint kinetics and segment energetics during the swing phase, 15 male distance runners were filmed as they performed treadmill running (3.35 m s-1) under five load conditions: no added load and loads of 0.25 kg and 0.50 kg added to each thigh or each foot. Results of this study demonstrated that the energetics of the lower extremity movements during the swing phase of the running cycle were dominated by mechanical energy transfers between adjacent segments attributed to the joint reaction forces, which acted to redistribute mechanical energy within the system. These contributions were considerably greater than those of the net joint moments, which primarily reflected muscular generation and dissipation of mechanical energy. Lower extremity loading caused little change in the movement pattern of the swing leg. However, increases in the joint reaction forces and net moments and in the amount of work done and the energy transfer attributed to the reaction forces and moments were observed, but were limited to the joints proximal to the location of the added load. These results were consistent with the increased aerobic demand associated with increases in lower extremity inertia that have been reported elsewhere and also have implications for the manner in which the neuromuscular system controls the motion of the legs during running.  相似文献   

6.
Three-dimensional measurement of rearfoot motion during running   总被引:4,自引:0,他引:4  
Excessive ranges of motion during running have been speculated to be connected to injuries to the lower extremities. Movement of the foot and lower leg has commonly been studied with two-dimensional techniques. However, differences in the alignment of the longitudinal axis of the foot with the camera axis will produce measurement errors for projected angles of the lower extremities. A three-dimensional approach would not have this limitation. The purpose of this study is to present a three-dimensional model for calculation of angles between lower leg and foot, lower leg and ground, and foot and ground, and to compare results from treadmill running derived from this model with results derived from a two-dimensional model for different alignment angles between foot axis and camera axis. A two camera Selspot system was used to obtain three-dimensional information on motion of the studied segments. It was found that several two-dimensional variables measured from a posterior view are very sensitive to the alignment angle between the foot and the camera axis. Some variables change as much as 1 degrees for every 2 degrees of change of the alignment angle. The large influence of rotations other than the measured one in two-dimensional measurements makes advisable the use of a three-dimensional model when studying motion between foot and lower leg during running.  相似文献   

7.
The spatial gross motion of the foot with respect to the shank is modelled as rotations about two fixed ankle axes: the upper ankle rotation axis (plantarflexion/dorsiflexion) and the subtalar rotation axis (inversion/eversion). The positions of the axes are determined by externally visible bony landmarks of the lower leg and are measured for a living subject. The model input data are the plantarflexion/dorsiflexion and inversion/eversion rotation angles; the model output is a 4 × 4 transformation matrix which quantitatively describes the relative position of a foot coordinate system with respect to a shank coordinate system.  相似文献   

8.
Two-joint muscles are able to transmit mechanical energy between the links of the body having no common joint ("tendon action" of the muscles). It is proposed to calculate difference between control moment power in a joint and the sum of powers developed by all muscles serving this joint in order to determine the direction and rate of mechanical energy transfer through the two-joint muscles. It was shown that in the shock-absorbing phase of support in running two-joint muscles the energy transfers from distal to proximal links (from foot to thigh, and from shank to pelvis), in take-off phase-from proximal links to distal ones (from pelvis to shank, and from thigh to foot).  相似文献   

9.
Limbs of Bufo regularis REUSS metamorphic stages No. 57, 63 and 66 were transected at the thigh level. Removal of the apical skin cover on the third postoperative day, followed by traumatization after further two days in the limb stumps, was more effective in the enhancement of the regenerative ability than when each one of these procedures was performed independently. Better results were achieved in cases of the preclimactic stage (No. 57) where about 30% of the cases (Series III) developed heteromorphic limb outgrowths having more distal structures as the shank ending with or without toes. Normally, after transection at the same level, the limb stumps of this stage could restore part of the thigh region only.  相似文献   

10.
The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.  相似文献   

11.
The aims of this study were: (a) to examine the effect of falling height on the kinematics of the tibiotalar, talonavicular and calcaneocuboid joints and (b) to study the influence of falling height on the muscle activity of the leg during landings. Six female gymnasts (height: 1.63±0.04 m, weight: 58.21±3.46 kg) participated in this study. All six gymnasts carried out barefoot landings, falling from 1.0, 1.5 and 2.0 m height onto a mat. Three genlocked digital high speed video cameras (250 Hz) captured the motion of the left shank and foot. Surface electromyography (EMG) was used to measure muscle activity (1000 Hz) from five muscles (gastrocnemius medialis, tibialis anterior, peroneus longus, vastus lateralis and hamstrings) of the left leg. The kinematics of the tibiotalar, talonavicular and calcaneocuboid joints were studied. The lower-leg and the foot were modelled by means of a multi-body system, comprising seven rigid bodies. The falling height does not show any influence on the kinematics neither of the tibiotalar nor of the talonavicular joints during landing. The eversion at the calcaneocuboid joint increases with increasing falling height. When augmenting falling height, the myoelectric activity of the muscles of the lower limb increases as well during the pre-activation phase as during the landing itself. The muscles of the lower extremities are capable of stabilizing the tibiotalar and the talonavicular joints actively, restricting their maximal motion by means of a higher activation before and after touchdown. Maximal eversion at the calcaneocuboid joint increases about 52% when landing from 2.0 m.  相似文献   

12.
For in vivo impact loadings administered under controlled initial conditions, it was hypothesized that larger initial knee angles (IKA) and softer impacting interfaces would reduce impact loading and initial leg stiffness. A human pendulum was used to deliver controlled impacts to the right foot of 21 subjects for three IKA (0, 20 and 40°) and three interfaces (barefoot, soft and hard EVA foams). The external impact force and the shock experienced by the subjects' shank were measured simultaneously with a wall mounted force platform and a skin mounted accelerometer, respectively. Stiffness of the leg was derived using impact velocity and wall reaction force data. The results disproved the role of the knee joint in regulating initial leg stiffness and provided only partial support for the hypothesized improved cushioning. Larger knee flexion at contact reduced impact force but increased the shock travelling throughout the shank. Conversely, softer interfaces produced sizable reductions in both initial leg stiffness and severity of the impact experienced by the lower limb. Force rate of loading was found to be highly correlated (r=0.95) to limb stiffness that was defined by the heel fat pad and interface deformations. These results would suggest that interface interventions are more likely to protect the locomotor system against impact loading than knee angle strategies.  相似文献   

13.
Knowledge about intra-limb coordination (ILC) during challenging walking conditions provides insight into the adaptability of central nervous system (CNS) for controlling human gait. We assessed the effects of cognitive load and speed on the pattern and variability of the ILC in young people during walking. Thirty healthy young people (19 female and 11 male) participated in this study. They were asked to perform 9 walking trials on a treadmill, including walking at three paces (preferred, slower and faster) either without a cognitive task (single-task walking) or while subtracting 1?s or 3?s from a random three-digit number (simple and complex dual-task walking, respectively). Deviation phase (DP) and mean absolute relative phase (MARP) values—indicators of variability and phase dynamic of ILC, respectively—were calculated using the data collected by a motion capture system. We used a two-way repeated measure analysis of variance for statistical analysis. The results showed that cognitive load had a significant main effect on DP of right shank–foot and thigh–shank, left shank–foot and pelvis–thigh (p<0.05), and MARP of both thigh–shank segments (p<0.01). In addition, the main effect of walking speed was significant on DP of all segments in each side and MARP of both thigh–shank and pelvis–thigh segments (p<0.001). The interaction of cognitive load and walking speed was only significant for MARP values of left shank–foot and right pelvis–thigh (p<0.05 and p<0.001, respectively). We suggest that cognitive load and speed could significantly affect the ILC and variability and phase dynamic during walking.  相似文献   

14.
To quantify limb dynamics, accurate estimates are needed of anthropometric inertia parameters (mass, center-of-mass location, and moments of inertia). These estimates, however, are not available for human infants; therefore, the movement dynamics of infants have not been studied extensively. Here, regression equations for the masses, center-of-mass locations, and transverse moments of inertia of upper and lower limb segments (upper arm, forearm, and hand; thigh, leg, and foot) of 0.04 to 1.50 yr old infants are provided. A mathematical model of the human body was used to determine the anthropometric inertia parameters for upper limbs in 44 infants and for lower limbs in 70 infants. Stepwise linear regressions were used to fit the distributions of the anthropometric inertia parameters. The regression equations accounted for significant amounts of the variance (64-98%), and the R2-values compared favorably when our equations were cross-validated. Consequently, these regression equations can provide, for infants of similar ages, reasonable estimates of upper and lower limb anthropometric inertia parameters, suitable for equations of motion in the analysis of limb dynamics in human infants.  相似文献   

15.
The dynamics of the center of mass (CoM) during walking and running at various gait conditions are well described by the mechanics of a simple passive spring loaded inverted pendulum (SLIP). Due to its simplicity, however, the current form of the SLIP model is limited at providing any further information about multi-segmental lower limbs that generate oscillatory CoM behaviors and their corresponding ground reaction forces. Considering that the dynamics of the CoM are simply achieved by mass-spring mechanics, we wondered whether any of the multi-joint motions could be demonstrated by simple mechanics. In this study, we expand a SLIP model of human locomotion with an off-centered curvy foot connected to the leg by a springy segment that emulates the asymmetric kinematics and kinetics of the ankle joint. The passive dynamics of the proposed expansion of the SLIP model demonstrated the empirical data of ground reaction forces, center of mass trajectories, ankle joint kinematics and corresponding ankle joint torque at various gait speeds. From the mechanically simulated trajectories of the ankle joint and CoM, the motion of lower-limb segments, such as thigh and shank angles, could be estimated from inverse kinematics. The estimation of lower limb kinematics showed a qualitative match with empirical data of walking at various speeds. The representability of passive compliant mechanics for the kinetics of the CoM and ankle joint and lower limb joint kinematics implies that the coordination of multi-joint lower limbs during gait can be understood with a mechanical framework.  相似文献   

16.
The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m/min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent differences in the effect of speed. Thus, the CRP of the paw-shank coupling decreased with increasing speed during most of the gait cycle while the CRP of the shank-thigh coupling was decreased during the swing phase. The session-to-session reliability was fair to good for the coordination measure and poor for the variability measure.  相似文献   

17.
Biological inspiration has spawned a wealth of solutions to both mechanical design and control schemes in the efforts to develop agile legged machines. This paper presents a compliant leg mechanism for a small six-legged robot, HITCR-ll, based on abstracted anatomy from insect legs. Kinematic structure, relative proportion of leg segment lengths and actuation system were analyzed in consideration of anatomical structure as well as muscle system of insect legs and desired mobility. A spring based passive compliance mechanism inspired by musculoskeletal structures of biological systems was integrated into distal segment of the leg to soften foot impact on touchdown. In addition, an efficient locomotion planner capable of generating natural movements for the legs during swing phase was proposed. The problem of leg swing was formulated as an optimal control procedure that satisfies a series of locomotion task terms while minimizing a biologically-based objective function, which was solved by a Gauss Pseudospectral Method (GPM) based numerical technique. We applied this swing generation algorithm to both a simulation platform and a robot prototype. Results show that the proposed leg structure and swing planner are able to successfully perform effective swing movements on rugged terrains.  相似文献   

18.
Experiments were performed to determine the mechanical importance of the fascia lata in stopping the hind limb during its rearward extension and reversing the direction of leg swing. Samples of fascia lata from a number of different mammals were subjected to tensile tests. Tangent Young's moduli reached about 0.5 GPa and stresses at failure about 50 MPa for fascia from each of the species examined. Energy losses incurred in a loading-unloading cycle were generally about 20%. The moment arms of the fascia lata, in combination with its muscle, about the hip and knee joints were determined and the extension of the fascia lata while its muscle is active was estimated. Calculations suggest that the fascia lata could help to reverse the backward swing of the hind limb by recoiling elastically shortly after the foot leaves the ground. Substantial savings of internal kilnetic energy could be made.  相似文献   

19.
20.
This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the leg was larger, and the angular velocity of forward swing was also larger. At the moment of touching the ball, in the sagittal plane, the ankle joint angle and angular velocity of group A were larger than those of group B (P < 0.05). In conclusion, the high-level athletes can complete the high-quality kicking through a larger swing amplitude and speed of the kicking leg. In the training process, the athletes should pay attention to the speed and strength of the kicking leg to improve the kicking level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号