首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A method of applying a mometary mechanical stimulus to a human leg at any selected time during treadmill locomotion is described. The stimulus is produced by the breaking of a loop of fine copper wire by means of a motor and clutch device. An electrical signal at the time of stimulus is provided and the apparatus has no detrimental effect on normal walking.  相似文献   

3.
To investigate the metabolic cost and muscular actions required for the initiation and propagation of leg swing, we applied a novel combination of external forces to subjects walking on a treadmill. We applied a forward pulling force at each foot to assist leg swing, a constant forward pulling force at the waist to provide center of mass propulsion, and a combination of these foot and waist forces to evaluate leg swing. When the metabolic cost and muscle actions were at a minimum, the condition was considered optimal. We reasoned that the difference in energy consumption between the optimal combined waist and foot force trial and the optimal waist force-only trial would reflect the metabolic cost of initiating and propagating leg swing during normal walking. We also reasoned that a lower muscle activity with these assisting forces would indicate which muscles are normally responsible for initiating and propagating leg swing. With a propulsive force at the waist of 10% body weight (BW), the net metabolic cost of walking decreased to 58% of normal walking. With the optimal combination, a propulsive force at the waist of 10% BW plus a pulling force at the feet of 3% BW the net metabolic cost of walking further decreased to 48% of normal walking. With the same combination, the muscle activity of the iliopsoas and rectus femoris muscles during the swing phase was 27 and 60% lower, respectively, but the activity of the medial gastrocnemius and soleus before swing did not change. Thus our data indicate that approximately 10% of the net metabolic cost of walking is required to initiate and propagate leg swing. Additionally, the hip flexor muscles contribute to the initiation and propagation leg swing.  相似文献   

4.
In this study, designed to determine the effect of lower extremity inertia manipulation on joint kinetics and segment energetics during the swing phase, 15 male distance runners were filmed as they performed treadmill running (3.35 m s-1) under five load conditions: no added load and loads of 0.25 kg and 0.50 kg added to each thigh or each foot. Results of this study demonstrated that the energetics of the lower extremity movements during the swing phase of the running cycle were dominated by mechanical energy transfers between adjacent segments attributed to the joint reaction forces, which acted to redistribute mechanical energy within the system. These contributions were considerably greater than those of the net joint moments, which primarily reflected muscular generation and dissipation of mechanical energy. Lower extremity loading caused little change in the movement pattern of the swing leg. However, increases in the joint reaction forces and net moments and in the amount of work done and the energy transfer attributed to the reaction forces and moments were observed, but were limited to the joints proximal to the location of the added load. These results were consistent with the increased aerobic demand associated with increases in lower extremity inertia that have been reported elsewhere and also have implications for the manner in which the neuromuscular system controls the motion of the legs during running.  相似文献   

5.
As humans increase walking speed, there are concurrent transitions in the frequency ratio between arm and leg movements from 2:1 to 1:1 and in the phase relationship between the movements of the two arms from in-phase to out-of-phase. Superharmonic resonance of a pendulum with monofrequency excitation had been proposed as a potential model for this phenomenon. In this study, an alternative model of paired pendulums with multiple-frequency excitations is explored. It was predicted that the occurrence of the concurrent transitions was a function of (1) changes in the magnitude ratio of shoulder accelerations at step and stride frequencies that accompany changes in walking speed and (2) proximity of these frequencies to the natural resonance frequencies of the arms modeled as a pair of passive pendulums. Model predictions were compared with data collected from 14 healthy young subjects who were instructed to walk on a treadmill. Walking speeds were manipulated between 0.18 and 1.52 m/s in steps of 0.22 m/s. Kinematic data for the arms and shoulders were collected using a 3D motion analysis system, and simulations were conducted in which the movements of a double-pendulum system excited by the accelerations at the suspension point were analyzed to determine the extent to which the arms acted as passive pendulums. It was confirmed that the acceleration waveforms at the shoulder are composed primarily of stride and step frequency components. Between the shoulders, the stride frequency components were out-of-phase, while the step frequency components were in-phase. The amplitude ratio of the acceleration waveform components at the step and stride frequencies changed as a function of walking speed and were associated with the occurrence of the transitions. Simulation results using these summed components as excitatory inputs to the double-pendulum system were in agreement with actual transitions in 80% of the cases. The potential role of state-dependent active muscle contraction at shoulder joints on the occurrence of the transitions was discussed. Due to the tendency of arm movements to stay in the vicinity of their primary resonance frequency, these active muscle forces were hypothesized to function as escapements that created limit cycle oscillations at the shoulders resonant frequency.  相似文献   

6.
During gait, patients with pelvic girdle pain and low back pain demonstrate an altered phase relationship between axial thorax and pelvis rotations (thorax-pelvis relative phase). This could be the result of an increase in axial pelvis range of motion (ROM) which has been observed in these patients as well. To establish this relationship, we investigated if altered axial pelvis ROM during gait affects thorax-pelvis relative phase in 12 healthy subjects. These subjects walked on a treadmill and received real-time feedback on axial pelvis rotations. Subjects were asked to (1) walk normal, and walk with (2) decreased and (3) increased pelvis ROM. Gait speed and stride frequency were matched between trials. Subjects were able to increase pelvis ROM to a large extent, but the reduction in pelvis ROM was relatively small. Walking with large pelvis ROM resulted in a change in thorax-pelvis relative phase similar to that in pelvic girdle pain and low back pain. A forward dynamic model was used to predict the effect of manipulation of pelvis ROM on timing of thorax rotations independent of apparent axial trunk stiffness and arm swing amplitude (which can both affect thorax-pelvis relative phase). The model predicted a similar, even larger, effect of large axial pelvis ROM on thorax-pelvis relative phase, as observed experimentally. We conclude that walking with actively increased ROM of axial pelvis rotations in healthy subjects is associated with a shift in thorax-pelvis relative phase, similar to observations in patients with pelvic girdle pain and low back pain.  相似文献   

7.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

8.
The metabolic cost of leg swing in running is highly controversial. We investigated the cost of initiating and propagating leg swing at a moderate running speed and some of the muscular actions involved. We constructed an external swing assist (ESA) device that applied small anterior pulling forces to each foot during the first part of the swing phase. Subjects ran on a treadmill at 3.0 m/s normally and with ESA forces up to 4% body weight. With the greatest ESA force, net metabolic rate was 20.5% less than during normal running. Thus we infer that the metabolic cost of initiating and propagating leg swing comprises approximately 20% of the net cost of normal running. Even with the greatest ESA, mean electromyograph (mEMG) of the medial gastrocnemius and soleus muscles during later portions of stance phase did not change significantly compared with normal running, indicating that these muscles are not responsible for the initiation of leg swing. However, with ESA, rectus femoris mEMG during the early portions of swing phase was as much as 74% less than during normal running, confirming that it is responsible for the propagation of leg swing.  相似文献   

9.
The aim of this study was to investigate the influence of the upper limb swing on human gait. Measurements were performed on 52 subjects by using the Elite system with two cameras and a Kistler force platform. The recording of trajectories of characteristic body points on the subjects and the measurement of ground reaction forces have been performed at normal walking and at walking with emphasised rhythmic upper limb swing. The trajectory of the whole body mass centre, central dynamic moments of inertia and ground reaction forces have been calculated for every subject and mean curves of the entire group have been determined for walking with the natural and the emphasised upper limb swing. The determined mean values of normalised mechanical parameters have been compared and differences between the gait with the natural and the emphasised upper limb swing have been described.  相似文献   

10.
Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome "crouched" posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee. Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may, in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.  相似文献   

11.
The aim of the study was to assess the variability of EMG signal envelope with electrode location during gait. Surface EMG signals were recorded from 10 healthy subjects from the tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL), and soleus (SO) muscles. From TA, PL, GL and GM, signals were acquired using a two-dimensional grid of 4 x 3 electrodes (10 x 15 mm in size, as used in most gait laboratories) with 20-mm interelectrode distance in both directions. A similar grid of 3 x 3 electrodes was used for SO. EMG envelope was characterized by its peak value, area after normalization by the peak value, and time instant corresponding to the maximum. The maximum relative change in peak value with electrode location, expressed as a percentage of the peak value in the central location, was (mean+/-SD) 31+/-18% for TA, 29+/-13% for PL, 25+/-15% for GL, 14+/-8% for GM, and 26+/-14% for SO. The maximum relative change in area was 29+/-13% for TA, 73+/-40% for PL, 31+/-23% for GL, 35+/-20% for GM, 20+/-13% for SO, and in the position of maximum, computed as distance from the maximum position in the central channel, it was 5+/-10% of the gait cycle for TA, 26+/-16% for PL, 3+/-2% for GL, 3+/-1% for GM, 3+/-3% for SO. A crosstalk index, defined on the basis of the expected intervals of muscle activation for healthy subjects, indicated that estimated crosstalk was present between TA and PL, in an amount which depended on electrode location. It was concluded that the estimate of muscle activation intensity during gait from surface EMG is variable with location of the electrodes while timing of muscle activity is more robust to electrode displacement and can be reliably extracted in those cases in which crosstalk is limited. These results are valid for healthy subjects, where the level of muscular activity during gait is much lower than maximum.  相似文献   

12.
Inadequate peak knee extension during the swing phase of gait is a major deficit in individuals with spastic cerebral palsy (CP). The biomechanical mechanisms responsible for knee extension have not been thoroughly examined in CP. The purpose of this study was to assess the contributions of joint moments and gravity to knee extension acceleration during swing in children with spastic hemiplegic CP. Six children with spastic hemiplegic CP were recruited (age=13.4±4.8 years). Gait data were collected using an eight-camera system. Induced acceleration analysis was performed for each limb during swing. Average joint moment and gravity contributions to swing knee extension acceleration were calculated. Total swing and stance joint moment contributions were compared between the hemiplegic and non-hemiplegic limbs using paired t-tests (p<0.05). Swing limb joint moment contributions from the hemiplegic limb decelerated swing knee extension significantly more than those of the non-hemiplegic limb and resulted in significantly reduced knee extension acceleration. Total stance limb joint moment contributions were not statistically different. Swing limb joint moment contributions that decelerated knee extension appeared to be the primary cause of inadequate knee extension acceleration during swing. Stance limb muscle strength did not appear to be the limiting factor in achieving adequate knee extension in children with CP. Recent research has shown that the ability to extend the knee during swing is dependent on the selective voluntary motor control of the limb. Data from individual participants support this concept.  相似文献   

13.
Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger techniques yield significantly different maximum torques, endurance and coordinative skills, and also to identify preferable techniques. We modelled the seated swinger as a rigid dumbbell and compared three different techniques. A series of computer simulations were run with each technique, testing the performance with different body rotational speeds, delayed onset of body rotation and different body mass distributions, as swing amplitudes were brought up towards 90°. One technique was found to be extremely sensitive to the timing of body actions, limiting swing amplitudes to 50° and 8° when body action was delayed by 0.03 and 0.3?s, respectively. Two other more robust techniques reached 90° even with the largest of these delays, although more time (and endurance) was needed. However, these two methods also differed with respect to maximum torque and endurance, and none was preferable in both these aspects, being dependent on the swinger goals and abilities.  相似文献   

14.
Much attention has been devoted to how playground swing amplitudes are built up by swinger techniques, i.e. body actions. However, very little attention has been given to the requirements that such swinger techniques place on the swinger himself. The purpose of this study was to find out whether different swinger techniques yield significantly different maximum torques, endurance and coordinative skills, and also to identify preferable techniques. We modelled the seated swinger as a rigid dumbbell and compared three different techniques. A series of computer simulations were run with each technique, testing the performance with different body rotational speeds, delayed onset of body rotation and different body mass distributions, as swing amplitudes were brought up towards 90°. One technique was found to be extremely sensitive to the timing of body actions, limiting swing amplitudes to 50° and 8° when body action was delayed by 0.03 and 0.3 s, respectively. Two other more robust techniques reached 90° even with the largest of these delays, although more time (and endurance) was needed. However, these two methods also differed with respect to maximum torque and endurance, and none was preferable in both these aspects, being dependent on the swinger goals and abilities.  相似文献   

15.
Over time, leg prostheses have improved in design, but have been incapable of actively adapting to different walking velocities in a manner comparable to a biological limb. People with a leg amputation using such commercially available passive-elastic prostheses require significantly more metabolic energy to walk at the same velocities, prefer to walk slower and have abnormal biomechanics compared with non-amputees. A bionic prosthesis has been developed that emulates the function of a biological ankle during level-ground walking, specifically providing the net positive work required for a range of walking velocities. We compared metabolic energy costs, preferred velocities and biomechanical patterns of seven people with a unilateral transtibial amputation using the bionic prosthesis and using their own passive-elastic prosthesis to those of seven non-amputees during level-ground walking. Compared with using a passive-elastic prosthesis, using the bionic prosthesis decreased metabolic cost by 8 per cent, increased trailing prosthetic leg mechanical work by 57 per cent and decreased the leading biological leg mechanical work by 10 per cent, on average, across walking velocities of 0.75-1.75 m s(-1) and increased preferred walking velocity by 23 per cent. Using the bionic prosthesis resulted in metabolic energy costs, preferred walking velocities and biomechanical patterns that were not significantly different from people without an amputation.  相似文献   

16.
The muscle force sharing problem was solved for the swing phase of gait using a dynamic optimization algorithm. For comparison purposes the problem was also solved using a typical static optimization algorithm. The objective function for the dynamic optimization algorithm was a combination of the tracking error and the metabolic energy consumption. The latter quantity was taken to be the sum of the total work done by the muscles and the enthalpy change during the contraction. The objective function for the static optimization problem was the sum of the cubes of the muscle stresses. To solve the problem using the static approach, the inverse dynamics problem was first solved in order to determine the resultant joint torques required to generate the given hip, knee and ankle trajectories. To this effect the angular velocities and accelerations were obtained by numerical differentiation using a low-pass digital filter. The dynamic optimization problem was solved using the Fletcher-Reeves conjugate gradient algorithm, and the static optimization problem was solved using the Gradient-restoration algorithm. The results show influence of internal muscle dynamics on muscle control histories vis a vis muscle forces. They also illustrate the strong sensitivity of the results to the differentiation procedure used in the static optimization approach.  相似文献   

17.
18.
Phase plane analysis of dynamical systems, in which variables are plotted against their time derivatives, has been recently emphasized as a general method for reconstructing system dynamics from data. The purpose of this experiment was to develop a model of leg movement in a stepping task using the phase plane approach. In this model, the leg is represented as a three-body linkage and the motion of the leg is assumed to be planar with four degrees of freedom. Experimental data was collected on one subject stepping six times, using a two dimensional videomotion analysis system with reflective markers placed on the lower limb joints. A computer program able to solve the equations of motion and compute the state of the system for a given task was implemented. This computer program was written to generate the motion of the leg for a given task using inverse kinematics and a preplanned foot path. Foot trajectories with cycloidal, constant acceleration/deceleration and sinusoidal velocity profiles were studied. From the results, an attempt was made to identify the variables which are measured and to determine the motion characteristics during stepping. The preliminary results support the concept of a hierarchical control structure with openloop control during normal operation. During routine activity there is no direct intervention of the Central Nervous System (CNS). The results support the existence of preprogramming and provide a starting point for the study of the development of control in multiarticulate movements.  相似文献   

19.
In this paper we examine a method to control the stepping motion of a paralyzed person suspended over a treadmill using a robot attached to the pelvis. A leg swing motion is created by moving the pelvis without contact with the legs. The problem is formulated as an optimal control problem for an underactuated articulated chain. The optimal control problem is converted into a discrete parameter optimization and an efficient gradient-based algorithm is used to solve it. Motion capture data from an unimpaired human subject is compared to the simulation results from the dynamic motion optimization. Our results suggest that it is feasible to drive repetitive stepping on a treadmill by a paralyzed person by assisting in torso movement alone. The optimized, pelvic motion strategies are comparable to "hip-hiking" gait strategies used by people with lower limb prostheses or hemiparesis. The resulting motions can be found at the web site http://ww.eng.uci.edu/-chwang/project/stepper/stepper.html.  相似文献   

20.
Modeling the lumbar spine as a single rigid segment does not consider the relative contribution of regional or segmental motion that may occur during a task. The current study used a multi-segment model to measure three-dimensional (3D) upper and lower lumbar spine motion during walking and prone hip extension (PHE). The degree of segmental redundancy during these movements was assessed by calculating the cross-correlation of the segmental angle time series (R0) and the correlation of the segmental ranges of motion (RROM). All correlation coefficients (R0, RROM) were interpreted as follows: very strong (0.80–1.00), strong (0.60–0.79), moderate (0.40–0.59), weak (0.20–0.39), and very weak (0.00–0.19). Strong/very strong positive R0 were demonstrated between the two segments in all three planes during PHE and in the transverse plane during walking. Weak/moderate R0 were demonstrated in the sagittal and frontal planes during walking. Strong/very strong positive RROM were demonstrated in the transverse plane during PHE, and moderate positive RROM was demonstrated in the sagittal plane during walking. Non-significant RROM were demonstrated for all other planes and movements. These results suggest the motion patterns of the upper and lower lumbar regions during walking and PHE are sufficiently distinct to warrant the use a multi-segment model for these movements. It also appears that the degree of redundancy between the upper and lower lumbar regions may be task-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号