首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar than the regional driver of N deposition. Foliar increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root was more tightly coupled to forest floor properties than was foliar . We observed a pattern of decreasing foliar values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar included species composition and climate. Relationships between foliar and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar , due to the importance of ammonium deposition in this region. Our results suggest that examining values of foliage may improve understanding of how forests respond to the cascading effects of N deposition.  相似文献   

2.
A dual isotope approach was used to assess the relative importance of terrestrial vegetation detritus and other primary producers in the trophic web of Flamengo Sound (Ubatuba, SP), SE Brazil, surrounded by the Atlantic Rain Forest. Primary producers showed distinct C signatures and the observed values suggest that little terrestrial or bulk sediment organic matter enter the food web of the sound. Suspended particulate organic matter (POM, supports the bulk of the consumers, with some contribution by macroalgae . Consumers C values ranged from −17.4 to . At least three trophic levels were detectable in the food web. The N value of POM was , while that of sediment and detritus was . The N values of suspension feeding benthic invertebrates were 8.2–, deposit feeders 8.3–, and carnivores 10.7–. Values for fishes were for detritivore, 11.4– for benthic feeders, 12.4– for zooplanktivores, and for piscivores/benthic invertebrate feeders. Squid mean value was . There is a reasonable agreement between feeding habits information from the literature and N values from this study. In the sound, the first and second trophic steps seem to be about 1– higher than those of similar organisms studied in temperate waters and this may reflect an input of allochtonous anthropogenic nitrogen enriched in 15N from human activities.  相似文献   

3.
Four whole-lake inorganic 13C addition experiments were conducted in lakes of differing trophic status. Inorganic 13C addition enriched algal carbon in 13C and changed the C-DOC by +1.5‰ to +9.5‰, depending on the specific lake. This change in C-DOC represented a significant input of algal DOC that was not completely consumed by bacteria. We modeled the dynamics in C-DOC to estimate the fluxes of algal and terrestrial carbon to and from the DOC pool, and determine the composition of the standing stock. Two experiments in lightly stained, oligotrophic lakes indicated that algal production was the source of about 20% of the DOC pool. In the following year, the experiment was repeated in one of these lakes under conditions of nutrient enrichment, and in a third, more humic lake. Algal contributions to the DOC pool were 40% in the nutrient enriched lake and 5% in the more humic lake. Spectroscopic and elemental analyses corroborated the presence of increased algal DOC in the nutrient enriched lake. Natural abundance measurements of the C of DOC in 32 lakes also revealed the dual contributions of both terrestrial and algal carbon to DOC. From these results, we suggest an approach for inferring the contribution of algal and terrestrial DOC using easily measurable parameters.  相似文献   

4.
It is proposed to obtain effective Lipari–Szabo order parameters and local correlation times for relaxation vectors of protein 13CO nuclei by carrying out a 13CO-R1 auto relaxation experiment, a transverse CSA/dipolar cross correlation and a transverse 13CO CSA/13CO–15N CSA/dipolar cross correlation experiment. Given the global rotational correlation time from 15N relaxation experiments, a new program COMFORD (CO-Modelfree Fitting Of Relaxation Data) is presented to fit the 13CO data to an effective order parameter , an effective local correlation time and the orientation of the CSA tensor with respect to the molecular frame. It is shown that the effective is least sensitive to rotational fluctuations about an imaginary axis and most sensitive to rotational fluctuations about an imaginary axis parallel to the NH bond direction. As such, the information is fully complementary to the 15N relaxation order parameter, which is least sensitive to fluctuations about the NH axis and most sensitive to fluctuations about the axis. The new paradigm is applied on data of Ca2+ saturated Calmodulin, and on available literature data for Ubiquitin. Our data indicate that the order parameters rapport on slower, and sometimes different, motions than the 15N relaxation order parameters. The CO local correlation times correlate well with the calmodulin’s secondary structure. Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

5.
Biocycling of sulfur (S) has been proposed to play an important role in the recovery of ecosystems following anthropogenic S deposition. Here, we investigated the importance of the humus layer in the biocycling of S in three forested catchments in the Gårdsjön area of southwestern Sweden with differing S inputs and S isotope signature values. These experimental sites consisted of two reference catchments and the Gårdsjön roof experiment catchment (G1), where anthropogenic deposition was intercepted from 1991 until May 2002 by a roof placed over the entire catchment area. Under the roof, controlled levels of deposition were applied, using a sprinkler system, and the only form of S added was marine SO42− with a δ of +19.5‰.We installed ion exchange resin bags at the interface between the humus layer and mineral soil at each of the catchments to collect SO42− passing through the humus. The resin bags were installed on four occasions, in 1999 and 2000, covering two summer and two winter periods. The ions collected by each bag during these sampling periods were then eluted and their δ values and SO42− concentrations determined. The most striking result is that the average δ value in the resin bags was more than 12‰ lower compared to that of the sprinkler water in the G1 roof catchment. There was no increasing trend in the isotope value in the resin bag SO42− despite that the roof treatment has been on-going for almost 10 years; the average value for all resin bags was +7.1‰. The highest δ values found in the G1 roof catchment were between +11‰ and +12‰. However, these values were all obtained from resin bags installed at a single sampling location. Throughfall and resin bag δ values were more similar in the two reference catchments: about +7.5‰ in both cases. There was, however, an increase in resin bag δ values during the first winter period, from about +7‰ to +9‰. The resin bag δ value was linearly and positively related (r2 = 0.26, p < 0.001) to the amount of SO42− extracted from the resin bags, if relatively high amounts (>50 mmol m−2) were excluded. High amounts of resin bag SO42− seemed to be related to groundwater inputs, as indicated by the δ value. Our results suggest that rapid immobilization of SO42− into a large organic S pool may alter the S isotope value and affect the δ values measured in the mineral soil and runoff.  相似文献   

6.
Summary The rate of oxygen consumption ( ) by skeletal muscle was investigated in isolated perfused hindlimbs of laboratory rats and lemmings (Lemmus). In both species, increased in proportion to blood flow rate, even at flow rates 4–5 times above resting level. The slope of the line relating to skeletal muscle blood flow was significantly greater in the lemming than in the rat. This may be related to the inverse relationship between body weight and metabolic rate. These data support the hypothesis that in small animals a dependent relationship exists between blood flow and skeletal muscle .  相似文献   

7.
We present long-term nutrient data on the Changjiang River (Yangtze River) at six hydrological stations and eight principal tributaries during the period 1958–1985. Three patterns of temporal changes were observed in nitrate and nitrite : minimal variations in the upper catchment area, rapid increases in the middle watershed towards the end of the 1970s, and a gradual increase in the lower drainage basin. Prior to the 1970s, the level of throughout the Changjiang River system remained fairly constant. In the 1980s, however, this changed, with the lowest values in the upper Changjiang changing rapidly to the highest in the middle reaches and then declining slowly but steadily in the lower courses. Compared to and ammonium and soluble reactive phosphorus (SRP) showed smaller increases or no long-term variations, while dissolved silica (DSi) concentration generally decreased at most stations. These three patterns of and changes in the Changjiang River system were reflective of the difference in chemical fertilizer use and landscape features (e.g., slope, soil type and water body area) of the drainage basins of the primary tributaries. The decreases in DSi were most likely attributed to a reduction in suspended sediment loading due to dam constructions and increasing diatom consumption. The increase in and with a reduction in DSi concentrations in the Changjiang River could have significant effects on the stoichiometric balance of nutrients delivered to the East China Sea and the ecosystem in this dynamic region.  相似文献   

8.
The aim of this study was to measure running times to exhaustion (Tlim) on a treadmill at 100% of the minimum velocity which elicits max max in 38 elite male long - distance runners max = 71.4 ± 5.5 ml.kg–1.min–1 and max = 21.8 ± 1.2 km.h–1). The lactate threshold (LT) was defined as a starting point of accelerated lactate accumulation around 4 mM and was expressed in max. Tlim value was negatively correlated with max (r = -0.362, p< 0.05) and max (r = –0.347, p< 0.05) but positively with LT (%v max) (r = 0.378, p < 0.05). These data demonstrate that running time to exhaustion at max in a homogeneous group of elite male long-distance runners was inversely related to max and experimentally illustrates the model of Monod and Scherrer regarding the time limit-velocity relationship adapted from local exercise for running by Hughson et al. (1984) .  相似文献   

9.
10.
Heteronuclear NMR spin relaxation studies of conformational dynamics are coming into increasing use to help understand the functions of ribozymes and other RNAs. Due to strong magnetic interactions within the ribose ring, however, these studies have thus far largely been limited to 13C and 15N resonances on the nucleotide base side chains. We report here the application of the alternate-site 13C isotopic labeling scheme, pioneered by LeMaster for relaxation studies of amino acid side chains, to nucleic acid systems. We have used different strains of E. coli to prepare mononucleotides containing 13C label in one of two patterns: Either C1′ or C2′ in addition to C4′, termed (1′/2′,4′) labeling, or nearly complete labeling at the C2′ and C4′ sites only, termed (2′,4′) labeling. These patterns provide isolated H spin systems on the labeled carbon atoms and thus allow spin relaxation studies without interference from scalar or dipolar coupling. Using relaxation studies of AMP dissolved in glycerol at varying temperature to produce systems with correlation times characteristic of different size RNAs, we demonstrate the removal of errors due to interaction in T 1 measurements of larger nucleic acids and in T measurements in RNA molecules. By extending the applicability of spin relaxation measurements to backbone ribose groups, this technology should greatly improve the flexibility and completeness of NMR analyses of conformational dynamics in RNA.  相似文献   

11.
Analysis of linkage disequilibrium (=mean squared correlation of allele frequencies at different gene loci) provides a means of estimating effective population size (N e) from a single sample, but this method has seen much less use than the temporal method (which requires at least two samples). It is shown that for realistic numbers of loci and alleles, the linkage disequilibrium method can provide precision comparable to that of the temporal method. However, computer simulations show that estimates of N e based on for unlinked, diallelic gene loci are sharply biased downwards ( in some cases) if sample size (S) is less than true N e. The bias is shown to arise from inaccuracies in published formula for when S and/or N e are small. Empirically derived modifications to for two mating systems (random mating and lifetime monogamy) effectively eliminate the bias (residual bias in % in most cases). The modified method also performs well in estimating N e in non-ideal populations with skewed sex ratio or non-random variance in reproductive success. Recent population declines are not likely to seriously affect , but if N has recently increased from a bottleneck can be biased downwards for a few generations. These results should facilitate application of the disequilibrium method for estimating contemporary N e in natural populations. However, a comprehensive assessment of performance of with highly polymorphic markers such as microsatellites is needed.The US Governmentȁ9s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

12.
The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS 13C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes (12C, 13C, 14C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition between the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, 13C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in 14C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 ± 6 and the values of indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.  相似文献   

13.
A mechanistic understanding of perchlorate () entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of phytoremediation. To determine whether common soil anions affect uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between (50 nM) and (4–12 mM), (1–10 mM), or Cl (5–15 mM) in hydroponic solution. The effects of (0–5 mM) and pH (5.5–7.5) on uptake were also examined. Increasing in solution significantly reduced the amount of taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl had no significant effects on uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of taken up by crisphead and green leaf lettuces, whereas increasing significantly reduced uptake in butter head lettuce. The inhibition by across all lettuce genotypes suggests that may share an ion carrier with , and the decrease in uptake with increasing pH or provides macroscopic evidence for cotransport across the plasma membrane.  相似文献   

14.
15.
A small catchment on the Swedish West Coast has been studied over four years to determine S dynamics by using S isotope ratios. A Norway spruce dominated forest covers the catchment, and small peat areas occur in the lower parts of the catchment. The runoff values varied both during the year, and from year to year. Over the period from February 1990 to December 1993, the values ranged from — 1%. to +11%. Over the same period, the throughfall values ranged from +1%. to +15%. There was no correlation (r 2= 0.01; Pr(F)=0.57) between values in throughfall and runoff. Since the only input of S to the catchment is atmospheric deposition, the long-term runoff S mass flux is controlled by the deposition. Therefore, processes in the catchment are responsible for the variation in the runoff values. During periods with enriched runoff, bacterial dissimilatory SO 4 2– reduction occurs in the catchment. After very dry periods, oxidation of this reduced S, which is32S-enriched, can be traced in runoff. Previous studies of the catchment have not been able to distinguish between: 1) oxidation of reduced S and dry deposition, and 2) reduction and adsorption. From the current study, it can be concluded that adsorption and dry deposition cannot cause the observed variation in runoff .  相似文献   

16.
Quantifying foliar stable carbon isotope discrimination (Δ) is a powerful approach for understanding genetic variation in gas exchange traits in large populations. The genetic architecture of Δ and third-year height is described for more than 1,000 clones of Pinus taeda tested on two contrasting sites. for Δ was 0.14 (±0.03), 0.20 (±0.07), and 0.09 (±0.04) at Florida, Georgia, and across sites, respectively. for stable carbon isotope discrimination ranged from 0.25 (±0.03) at the Florida site to 0.33 (±0.03) at the Georgia site, while the across-site estimate of was 0.19 (±0.02). For third-year height, ranged from 0.13 (±0.05) at the Georgia site to 0.20 (±0.06) at the Florida site with an across-site estimate of 0.09 (±0.05). Broad-sense heritability estimates for third-year height were 0.23 (±0.03), 0.28 (±0.03), and 0.13 (±0.02) at the Florida site, Georgia site, and across sites, respectively. Type B total genetic correlation for Δ was 0.70 ± 0.06, indicating that clonal rankings were relatively stable across sites, while for third-year height, rankings of clones were more unstable across the two trials . Third-year height and Δ were negatively correlated at the parental , full-sib family , and clonal levels, suggesting that genetic variation for Δ in P. taeda may be a result of differences in photosynthetic capacity. We conclude that Δ may be a useful selection trait to improve water-use efficiency and for guiding deployment decisions in P. taeda.  相似文献   

17.
Genetically engineered pacemaking in ventricular cells has been achieved by down-regulation of the time independent inward rectifying current (I K1), or insertion of the hyperpolarisation-activated funny current (I f). We analyse the membrane system (i.e. ionic concentrations clamped) of an epicardial Luo-Rudy dynamic cell model using continuation algorithms with the maximum conductance () of I K1 and I f as bifurcation parameters. Pacemaker activity can be induced either via Hopf or homoclinic bifurcations. As K1 is decreased by ≈74%, autorhythmicity emerged via a homoclinic bifurcation, i.e., the periodicity first appear with infinitely large periods. In contrast, the insertion of f induced periodicity via a subcritical Hopf bifurcation at f≈ 0.25 mSμF−1. Stable autorhythmic action potentials occurred at f > 0.329 mSμF−1.  相似文献   

18.
Influence of 100 μM Ni on growth, Ni accumulation,, H2O2 and lipid peroxides contents as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD) and glutathione peroxidase (GSH-Px) were studied in the leaves of wheat plants on the 3rd, 6th and 9th days after treatment. Exposure of the plants to Ni for only 3 days led to almost 200-fold increase in this metal concentration in the leaf tissue but later the rate of Ni accumulation was much slower. Length and fresh weight of the leaves were substantially reduced, up to 25% and 39%, respectively at the end of experiment. Visible symptoms of Ni toxicity: chlorosis and necrosis were observed following the 3rd day. Treatment with Ni resulted in the increase in and H2O2 contents in the leaves. Both showed their highest values, approximately 250% of those of the control, on the 3rd day and then their levels decreased but still markedly exceeded the control values. SOD and CAT activities decreased significantly in response to Ni treatment, however a several-fold increase in APX and POD activities was found. No significant changes in lipid peroxides content were observed in the leaves after Ni application. The activity of GSH-Px showed a 29% induction on the 3rd day. Our results indicated that despite prolonged increases in and H2O2 levels, oxidative damage, measured as the level of lipid peroxidation, did not occur in the leaves of Ni-treated wheat.  相似文献   

19.
Novel cross-correlated spin relaxation (CCR) experiments are described, which measure pairwise CCR rates for obtaining peptide dihedral angles Φ. The experiments utilize intra-HNCA type coherence transfer to refocus 2-bond coupling evolution and generate the or multiple quantum coherences which are required for measuring the desired CCR rates. The contribution from other coherences is also discussed and an appropriate setting of the evolution delays is presented. These CCR experiments were applied to 15N- and 13C-labeled human ubiquitin. The relevant CCR rates showed a high degree of correlation with the Φ angles observed in the X-ray structure. By utilizing these CCR experiments in combination with those previously established for obtaining dihedral angle Ψ, we can determine high resolution structures of peptides that bind weakly to large target molecules.  相似文献   

20.
Bubble gas samples were collected at three different vegetation sites and two different depths (surface and 40 cm) in a natural wetland, Mizorogaike in Kyoto city, to investigate hydrogen concentration and δD and δ13C values of CH4. Hydrogen concentration in bubble gas varied from 1 to 205 ppm, and that collected during summer was higher than that during winter. Bubble samples collected at 40 cm at sphagnum site usually showed the lowest H2 concentration among the samples collected at the three sites and two depths on the same day. The lowest H2 concentration observed at 40 cm at sphagnum site was similar to that expected for environmental water in which H2 producer and consumer need to assemble for free energy requirement. Low δ13C and high δD (relatively small hydrogen fractionation; ‰) were observed in CH4 collected at a deeper (40 cm) layer of sphagnum site during winter, when H2 concentration was low (typically 2–4 ppm). On the other hand, CH4 in the bubble samples collected during summer showed high δ13C and low δD (relatively large hydrogen fractionation; ‰), when H2 concentration was high. Carbon and hydrogen isotope fractionation during CH4 production were variable, possibly depending on the H2 concentration and the production rate. Difference in enzymatic reaction and magnitude of hydrogen isotope exchange among water, CH4, and H2 may cause the variation in isotope fractionation during CH4 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号