首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
大脑中神经元突触间的信号传递是由许多神经递质受体介导的。在过去,Richard L.Huganir实验室一直致力于神经递质受体功能调节的分子机制。而最近,该实验室又聚焦到大脑中一种最主要的兴奋性受体的研究——谷氨酸受体。谷氨酸受体主要可以分为两大类:AMPA受体和NMDA受体。AMPA受体主要介导了快速的兴奋性突触传递;而NMDA受体则在神经可塑性和发育中起到重要作用。实验发现,AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。AMPA受体磷酸化的水平同时还在学习和记忆的细胞模型中发生改变,如长时程增强(LTP)和长时程抑制(LTD)。此外,AMPA受体中GluR1亚单位的磷酸化对于各种形式的可塑性以及空间记忆的维持有重要的作用。实验室主要研究突触部位谷氨酸受体在亚细胞水平的定位和聚集的分子机制。最近,一系列可以直接或间接与AMPA和NMDA受体相互作用的蛋白质得以发现,其中包括一个新发现的蛋白家族GRIPs(glutamate receptor interacting proteins)。GRIPs可以直接和AMPA受体的GluR2/3亚单位的C端结合。GRIPs包含7个PDZ结构域,可以介导蛋白与蛋白直接的相互连接,从而把各个AMPA受体交互连接在一起并与其他蛋白相连。另外,GluR2亚单位的c端还可以和兴奋性突触中的蛋白激酶C结合蛋白(PICK1)的PDZ结构域相互作用。另外,GluR2亚单位的C端也可以与一种参与膜融合的蛋白NSF相互作用。这些与AMPA受体相互作用的蛋白质对于受体在膜上的运输以及定位有至关重要的作用。同时,受体与PICK1和GRIP的结合对于小脑运动学习中的LTD有重要作用。总体上说,该实验室发现了一系列可以调节神经递质受体功能的分子机制,这些工作提示受体功能的调节可能是?  相似文献   

2.
α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors,AMPA receptors)介导中枢神经系统(CNS)绝大多数快兴奋性突触传递,在学习、记忆和认知等方面具有重要功能. 突触AMPA受体的数量、分布和亚基组成是调节突触传递强度的一个主要机制,与AMPA受体转运密切相关. 最新研究显示,异常的AMPA受体转运与阿尔茨海默病(Alzheimer’s disease,AD)、脆性X综合征(fragile X syndrome, FXS)等神经疾病有关. 本文主要针对AMPA受体转运及其调控的分子机制做一综述,以期为AD、FXS等神经疾病提供新的治疗靶点和途径.  相似文献   

3.
成年小鼠前脑NMDA受体参与神经元的动作电位发放   总被引:2,自引:2,他引:0  
Wang GD  Zhuo M 《生理学报》2006,58(6):511-520
谷氨酸是中枢神经系统主要的快速兴奋性递质。AMPA受体和海人藻酸受体主要参与突触传递,而NMDA受体主要参与突触可塑性。基因操作的方法增强NMDA受体的功能,可以增强动物在正常生理状态下的学习能力,及在组织损伤情况下的反应敏感性。NMDA受体参与生理功能的主要机制是长时程增强(long—term potentiation,LTP)。我们的研究表明,NMDA受体不仅参与刺激前扣带皮层的第五层细胞或刺激白质诱导的突触反应,而且参与在胞体施加去极化跃阶电流诱导的动作电位的发放。钙一钙调蛋白敏感的腺苷酸环化酶1(adenylyl cyclase 1,AC1)和cAMP信号通路可能介导了这些反应。由于扣带皮层神经元在伤害性刺激和痛中发挥重要作用,我们的结果为前脑NMDA受体参与突触传递和动作电位发放,以及与前脑相关的行为,如感受伤害性刺激和痛,提供了一个新的机制。  相似文献   

4.
AMPA 受体是兴奋性神经递质谷氨酸的非N- 甲基-D- 天冬氨酸型离子型跨膜受体,其介导中枢神经系统快速兴奋性突触传递,在中枢神经系统的信号传导、神经发育以及突触的可塑性等方面有重要的影响。研究表明,多种疾病如神经精神系统疾病、心血管疾病、肿瘤、呼吸系统疾病、内分泌系统疾病的发生发展与AMPA 受体数量或功能的异常密切相关。近年来,AMPA 受体作为一种理想的药物作用靶点,受到了越来越多的关注。结合汤森路透数据库资源——Thomson Reuters Integrity 和Cortellis for Competitive Intelligence,对AMPA 受体的机制、相关药物研究进展、适应证、研发机构、交易、专利、文献等情报进行数据层面的分析。  相似文献   

5.
脆性X综合征为最常见的遗传性智力低下性疾病之一,是由于FMR1基因异常导致其编码的脆性X智力低下蛋白减少或缺失所致.研究发现脆性X综合征尸解病人和FMR1基因敲除小鼠(KO鼠)神经元树突棘发育不成熟,模型小鼠海马区代谢性谷氨酸受体所触发的长时程抑制(LTD)延长,不成熟的树突棘导致突触功能障碍被认为是脑功能异常的基础.最近的研究表明,应用代谢性谷氨酸受体拮抗剂能改善由FMRP缺失所导致的突触和行为缺陷,表明mGluR功能过度激活可能参与了脆性X综合征的发病过程,但具体机制不明.FMRP是一种mRNA结合蛋白,可作为翻译抑制因子负性调节突触后膜mRNA的翻译和表达.因此推测FMRP缺乏和减少可能导致mGluR激发的mRNA翻译增多,参与神经系统发育的蛋白过度表达,而影响树突棘的发育,但具体机制仍不清楚.本文对mGluR和脆性X综合征的研究历史和最新进展进行了讨论.  相似文献   

6.
郑煜 《生理科学进展》1989,20(3):273-275
N-甲基-D-门冬氨酸(NMDA)受体是一种兴奋性氨基酸受体,广泛分布于许多脑区。该受体被激活后,突触后膜产生一长时程的兴奋性突触后电位,进而引起多种神经生物学效应或神经毒性作用。Ca~(2 )对于NMDA受体效应的产生具有重要意义。  相似文献   

7.
代谢型谷氨酸受体在突触可塑性中的作用研究进展   总被引:5,自引:0,他引:5  
突触可塑性是近 30年来神经科学领域的研究热点之一 ,它主要包括长时程增强 (long termpotentiation ,LTP)和长时程抑制 (long termdepression ,LTD)。以往的研究已经证实 ,离子型谷氨酸受体 (iGluRs)中的NMDA受体和AMPA受体 ,在LTP和LTD的诱导和维持中通过阳离子内流 ,引起细胞内的级联反应而起作用。新近的研究发现 ,代谢型谷氨酸受体 (mGluRs)与G蛋白偶联 ,通过细胞内的多种信使系统介导慢突触传递。本文主要就mGluRs在不同脑区LTP和LTD中的作用进行综述  相似文献   

8.
钙/钙调蛋白依赖的蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)在脑内兴奋性突触部位丰富表达。通过催化谷氨酸受体和众多突触蛋白磷酸化,CaMKⅡ调节磷酸化蛋白在基础或细胞兴奋时的转运、分布和功能。谷氨酸NMDA受体是CaMKⅡ的直接底物,有证据表明CaMKⅡ直接与NMDA受体胞内C末端相互结合,催化一特定丝氨酸(S1303)的磷酸化。CaMKⅡ也加强谷氨酸AMPA受体的磷酸化,通过磷酸化AMPA受体C末端特定的丝氨酸(S831),CaMKⅡ增强AMPA受体的功能。此外,CaMKⅡ可与代谢型谷氨酸受体mGluR1亚型的胞内C末端结合,促进一特定苏氨酸(T871)的磷酸化,从而促进受体兴奋后脱敏。CaMKⅡ在正常状态下与mGluR5受体结合以储存于突触内,刺激mGluR5受体时,CaMKⅡ与mGluR5受体分离,转运至NMDA受体,以介导mGluR5信号对NMDA受体的增强作用。总之,CaMKⅡ与谷氨酸受体相互作用,改变受体磷酸化水平,参与受体的数量和功能以及突触传导活动的调节。  相似文献   

9.
突触长时程增强形成机制的研究进展   总被引:13,自引:0,他引:13  
Xu L  Zhang JT 《生理科学进展》2001,32(4):298-301
高等动物脑内突触传递的可塑性是近30年来神经科学研究的热点,突触传递长时程增强(long-term potentiation,LTP)是神经元可塑性的反映,其形成主要与突触后机制有关。过去关于LTP机制的研究主要集中于N-甲基-D门冬氨酸(NMDA)受体的特征及该受体被激活后的细胞内级联反应,现认为脑内存在只具有NMDA受体而不具有α-氨基羟甲基恶唑丙酸(AMPA)受体的“静寂突触(silent synapse)”,这一概念的提出,使人们认识到AMPA受体在LTP表达的突触后机制中的重要作用。  相似文献   

10.
本研究旨在探讨α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体参与的出生后大鼠海马发育早期的电生理学特点。选择出生后0.5月龄、1月龄、2月龄和3月龄Wistar大鼠共计48只(每组各12只)。应用全细胞膜片钳技术及MED64平面微电极阵列技术检测海马CA1区锥体神经元的被动膜特性及AMPA受体参与的自发兴奋性突触后电流(spontaneous exctitatory postsynaptic current,sEPSC)和场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)。结果显示,海马CA1区锥体神经元在出生后0.5~3月龄期间,在被动膜特性方面表现为:膜电容与静息膜电位无显著性变化;膜输入电阻与时间常数均显著下降。在主动膜特性方面,呈现出阶段性变化:0.5~1月龄期间,s EPSC的反应表现为:振幅显著升高,频率明显增大,上升时间及下降时间显著增加;1~3月龄期间,sEPSC的反应特性与0.5~1月龄期间相反。此外,0.5~3月龄期间,海马CA1区诱发出的f EPSP范围明显扩大,而幅值显著减小;各月龄海马CA1区诱发出的fEPSP幅值均可被AMPA受体竞争性拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)明显降低。以上结果提示,在出生后大鼠海马发育早期过程中,AMPA受体作为调节突触传递和突触联系的主要兴奋性受体,可以促进海马的发育及功能成熟。  相似文献   

11.
B型γ-氨基丁酸受体研究进展   总被引:3,自引:0,他引:3  
GABAB受体是近年来新发现的GABA受体亚型。它的活化在突触后膜增加K+电导,引起长时程晚抑制性突触后电位;在突触前膜则抑制Ca2+电导,使兴奋性或抑制性递质的释放减少。该受体活动对机体的镇痛、肌肉痉挛、癫痫的发作等生理和病理生理过程都有重要的影响。  相似文献   

12.
B型γ—氨基丁酸受体研究进展   总被引:10,自引:0,他引:10  
GABAB受体是近年来新发现的GABA受体亚型。它的活化在突触后膜增加K^+电导,引起长时程晚抑制性突触后电位;在突触前膜则抑制Ca^2+电导,使兴奋性或抑制性递质的释放减少,该受体活动对机体的镇痛、肌肉痉挛、癫痫的发作等生理和病理生理过程都有重要的影响。  相似文献   

13.
Zhang YH  Hu GY 《生理科学进展》2001,32(2):165-167
由于缺乏选择性药物,中枢神经系统内海人藻酸受体的生理功能长期未被阐明。近年来发现,2,3-苯二氮Zuo类化合物GYKI52466和GYKI53655是AMPA受体的选择性拮抗剂。理组受体技术,筛选出海人藻酸受体GluR5亚基的高选择性激动剂ATPA及拮抗剂LY294486、LY293558和LY382884等。应用上述药物开展的生理学研究,证明海人藻酸受体在某些脑区具有介导兴奋性突触、参与突触可塑性机制以及调节神经质释放等重要功能。  相似文献   

14.
钙 钙调蛋白依赖性蛋白激酶II(calcium /calmodulindependentproteinkinaseII ,CaMKII)在兴奋性突触长时程增强 (longtermpotentiation ,LTP)和其他形式的突触可塑性等生理现象中起重要作用。用观察神经元胞体内某种分子参与突触后致密物 (postsynapticdensities ,PSD)的组成可以判断此分子是否参与LTP等突触可塑性过程。体外实验发现 ,用绿色荧光蛋白 (greenfluorescentprotein ,GFP)标记的CaMKII分子可在神经元受到谷氨酸或者直接电刺激后形成突触后膜密度簇 (PDSclusters)。最近 ,纽约州大学学者MichelleR .Gleason等进一…  相似文献   

15.
Yang HW 《生理科学进展》2009,40(4):317-320
环氧合酶-2 (cyclooxygenase-2,COX-2)是催化花生四烯酸转化为前列腺素的限速酶,广泛参与脑创伤、缺血诱导的神经元损伤、炎症反应及神经变性性疾病等.COX-2在神经病理学中的作用与神经元的突触变化有关.增强或抑制COX-2表达可增强或抑制兴奋性谷氨酸能神经元的神经传递和长时程增强 (LTP),这些效应由COX-2的主要产物前列腺素E2(PGE2)及其受体亚型EP2所介导.因此,阐明COX-2在突触信号中的作用机制将有助于设计新的药物来预防、治疗及减轻神经源性炎症相关的神经紊乱性疾病.  相似文献   

16.
阿尔茨海默病(Alzheimer’s disease,AD)是一种起病隐匿的进行性发展的神经系统退行性疾病,主要病理特征表现为淀粉样蛋白沉积形成的老年斑、tau蛋白过度磷酸化导致的神经纤维缠结以及神经元丢失和突触损伤。其中,淀粉样蛋白沉积和tau蛋白过度磷酸化均可导致突触和神经棘缺失,严重影响神经递质系统功能,最终造成大脑学习记忆和认知能力损伤。从突触损伤角度出发,总结AD病理条件下,突触和神经递质及其受体的变化,为后期开展生物活性物质对AD病理中神经细胞信号通路的研究提供思路和理论基础。  相似文献   

17.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

18.
老年痴呆症的主要临床表现为认知功能严重受损,其原因可能是皮层与海马内的突触结构或功能障碍及神经环路活动异常所致。可溶性Aβ尤其是Aβ寡聚体(而不是沉积在脑组织中的淀粉样斑块)可能首先选择性地攻击GABA能抑制性神经元,使海马或皮层内兴奋性神经元由于所受抑制减弱而过度兴奋,进而导致神经环路或网络活动异常。神经网络异常又通过一系列的代偿反应引起突触传递和突触可塑性受损。正常生理水平的tau通过不同的机制在介导Aβ的突触及神经环路毒性中扮演重要角色。  相似文献   

19.
β-淀粉样蛋白前体蛋白(β-amyloid precursor protein,APP)是体内广泛表达的跨膜蛋白质,已知APP经β-分泌酶切割产生的β-淀粉样蛋白(Aβ)是阿尔茨海默病(AD)的标志性病理分子之一,但对APP生理功能的认识比较有限。近年的研究却发现,APP经分泌酶切割的可溶性胞外片段sAPP对于兴奋性神经毒性、脑缺血、脑创伤等病理状况具有与β-淀粉样蛋白相反的神经保护作用。离体和在体研究证明,APP的α-分泌酶切割片段sAPPα可促进神经元的增殖、分化以及促进突触的发育,并改善突触传递和突触可塑性,进而提升学习与认知功能;APP基因缺失则造成不良后果。已报道的sAPPα神经保护作用机制包括激活高电导钾通道,抑制电压依赖性钙通道和NMDA受体通道介导的钙内流,调节神经细胞的离子稳态,平衡神经元和突触的兴奋性。值得注意的是,最新的研究鉴定出sAPP在细胞表面的特异性受体GABA_BR1a,sAPP通过与该受体结合调节突触传递,协同降低神经元的异常兴奋性。可以预见,深入研究与发掘sAPP神经保护作用的机制与替代方法,恢复退行性病变脑组织已经降低的sAPPα水平与下游效应分子功能,将可能为相关脑疾病的发病机制与防治提供新思路或新策略。  相似文献   

20.
从运动神经元到肌细胞的信息传递主要通过神经肌接头来完成。神经肌接头重要的结构特征是高度特化的突触后膜。突触后膜异常簇集有大量的乙酰胆碱受体。乙酰胆碱受体簇集一3种分子密切相关,即集聚蛋白、肌特有受体酪氨酸激酶及突触后膜受体缔合蛋白;Arin诱导AChR在终板膜的簇集,MuSk为Agrin信号转导受体复合体的重要组合之一,Rapsyn则参与其效应机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号