首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Bertamini  M.  Muthuchelian  K.  Grando  M.S.  Nedunchezhian  N. 《Photosynthetica》2002,40(1):157-160
The contents of chlorophyll (Chl), leaf biomass, and soluble proteins were markedly decreased in phytoplasma infected apple leaves. Similar results were also observed for ribulose-1,5-bisphosphate carboxylase, 14CO2 fixation, and nitrate reductase activity. In contrast, the contents of sugars, starch, amino acids, and total saccharides were significantly increased in phytoplasma infected leaves. In isolated chloroplasts, phytoplasma infection caused marked inhibition of whole photosynthetic electron chain and photosystem 2 (PS2) activity. The artificial exogenous electron donor, diphenyl carbazide, significantly restored the loss of PS2 activity in infected leaves. Similar results were obtained when Fv/Fm was evaluated by in vivo Chl a fluorescence kinetic measurements.  相似文献   

2.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

3.
The degree of photoinhibition of sun and shade grown leaves of grapevine was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined under high irradiance (HI) in shade leaves with less than 10 % of F0 level. In contrast, Fv/Fm ratio declined with about 20 % increase of F0 level in sun leaves. In isolated thylakoids, the rate of whole chain and PS2 activity in HI shade and sun leaves was decreased by about 60 and 40 %, respectively. A smaller inhibition of photosystem 1 (PS1) activity was also observed in both leaf types. In the subsequent dark incubation, fast recovery was observed in both leaf types that reached maximum PS2 efficiencies similar to non-photoinhibited control leaves. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in sun leaves, while DPC and NH2OH were significantly restored in shade leaves. Hence HI in shade leaves inactivates on the donor side of PS2 whereas it does at the acceptor side in sun leaves, respectively. Quantification of the PS2 reaction centre protein D1 and the 33 kDa protein of water splitting complex following HI-treatment of leaves showed pronounced differences between shade and sun leaves. The marked loss of PS2 activity in HI leaves was due to the marked loss of D1 protein of the PS2 reaction centre protein and the 33 kDa protein of the water splitting complex in sun and shade leaves, respectively.  相似文献   

4.
In grapevine (Vitis vinifera L.) leaf chlorophyll (Chl) a and Chl b and carotenoid contents were higher in plants grown at low photon flux densities (PFD) than in those grown at medium and high PFD. The highest Chl a variable to maximum fluorescence ratio Fv/Fm was observed in plants grown at medium PFD while the minimum fluorescence F0 was highest in those at high PFD. In isolated thylakoids, both high and low PFD caused marked inhibition of whole chain and photosystem 2 (PS2) activities. The artificial exogenous electron donor diphenyl carbazide significantly restored the loss of PS2 activity in low PFD leaves.  相似文献   

5.
Changes in contents of pigments, chlorophyll-protein complex, and photosynthetic activities were investigated in field grown apple (Malus pumila Mill.) leaves infected by Apple Proliferation phytoplasma. The contents of chlorophyll a+b (Chl) and carotenoids (Car) markedly decreased in infected leaves. Similar results were also observed for content of total soluble proteins and ribulose-1,5-bisphosphate carboxylase activity. When various photosynthetic activities were followed in isolated thylakoids, phytoplasma infection caused a marked inhibition of whole chain and photosystem 2 (PS2) activity. Smaller inhibition of photosystem 1 (PS1) activity was observed even in severely infected leaves. The artificial exogenous electron donors, MnCl2 diphenyl carbazide, and NH2OH, did not restore the loss of PS2 activity in both mildly and severely infected leaves. Similar results were obtained by Chl fluorescence measurements. The marked loss of PS2 activity in infected leaves was due to the reduction of contents of chlorophyll and light-harvesting chlorophyll-protein 2 complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles. Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial exogenous electron donors, diphenyl carbazide (DPC) and NH2OH, significantly restored the loss of PS2 activity in shade needles. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28–25, 23, and 17 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the watersplitting complex was diminished significantly in shade needles.  相似文献   

7.
We have studied the effect of grapevine leafroll infection on some features of the thylakoids from field grown grapevine (Vitis vinifera L.) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose‐1,5‐bisphosphate carboxylase (RuBP), nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll (Chl) and carotenoids were reduced in virus‐infected leaves. Similar results were also observed for soluble proteins and RuBP case activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. Virus infection considerably decreased leaf net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (E) in grapevine leaves. When various photosynthetic activities were followed in isolated thylakoids, virus infection caused marked inhibition of whole chain and photosystem (PS) II activity while the inhibition of PSI activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine (NH2OH) significantly restored the loss of PSII activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PSII activity in infected leaves could be due to the loss of 47, 43, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that virus infection inactivates the donor side of PSII. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water‐splitting complex was diminished significantly in infected leaves.  相似文献   

8.
Lichtenthaler  H.K.  Babani  F.  Langsdorf  G.  Buschmann  C. 《Photosynthetica》2000,38(4):521-529
With a flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) the photosynthetic activity of several thousand image points of intact shade and sun leaves of beech were screened in a non-destructive way within a few seconds. The photosynthetic activity was determined via imaging the Chl fluorescence at maximum Fp and steady state fluorescence Fs of the induction kinetics (Kautsky effect) and by a subsequent determination of the images of the fluorescence decrease ratio RFd and the ratio Fp/Fs. Both fluorescence ratios are linearly correlated to the photosynthetic CO2 fixation rates. This imaging method permitted to detect the gradients in photosynthetic capacity and the patchiness of photosynthetic quantum conversion across the leaf. Sun leaves of beech showed a higher photosynthetic capacity and differential pigment ratios (Chl a/b and Chls/carotenoids) than shade leaves. Profile analysis and histogram of the Chl fluorescence yield and the Chl fluorescence ratios allow to quantify the differences in photosynthetic activity between different leaf parts and between sun and shade leaves with a high statistical significance.  相似文献   

9.
2-years-old cypress needles (A2) were physiologically most active with regard to net photosynthetic (P N) and electron transport rates. Variable to maximum fluorescence (Fv/Fm) ratios of dark-adapted needles were higher in A2 needles than in current year (A1) or senescent (A4) needles. Lower Fv/Fm values in these stages seemed to be caused not by photoinhibition but by a low photochemical capacity as suggested from the chlorophyll (Chl) a/b ratios. In isolated thylakoids, lower rates of whole chain and photosystem 2 (PS2) activities were observed in A4 needles, while higher rates were observed in A2 needles. A similar trend was noticed for contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC) and total soluble proteins. The artificial exogenous electron donor Mn2+ failed to restore the loss of PS2 activity in 3-year-old (A3) and A4 needles, while diphenylcarbazide and NH2OH significantly restored the loss of PS2 activity. The marked loss of PS2 activity in A4 needles was primarily the result of the loss of 33, 28–25, 23, and 17 kDa polypeptides. A marked loss of RuBPC activity in A4 needles is mainly due to the loss of 15 (SSU) and 55 (LSU) kDa polypeptides.  相似文献   

10.
Photoinhibition under irradiance of 2 000 μmol m−2 s−1 (HI) was studied in detached control (C) and water deficit (WD) leaves of grapevine (Vitis vinifera L.) plants. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) 2, Fv/Fm, marginally declined under HI in WD-leaves without significant increase of F0. In contrast, Fv/Fm ratio declined markedly with significant increase of F0 in C-leaves. In isolated thylakoids, the rate of whole chain and PS2 activity under HI were more decreased in C-than WD-leaves. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in both C-and WD-leaves. Thus HI operates at the acceptor side of PS2 in both leaf types. Quantification of the PS2 reaction centre protein D1 following HI exposure of leaves showed pronounced differences between C-and WD-leaves. The marked loss of PS2 activity under HI of C-leaves was due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

11.
Photoinhibition of photosynthesis was investigated in control (C) and chilling night (CN) leaves of grapevine under natural photoperiod at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the potential efficiency of photosystem (PS) 2, Fv/Fm was measured at midday, it markedly declined with significant increase of F0 in CN leaves. In isolated thylakoids, the rate of whole chain and PS2 activity were markedly decreased in CN leaves than control leaves at midday. A smaller inhibition of PS1 activity was also observed in both leaf types. Later, the leaves reached maximum PS2 efficiencies similar to those observed in the morning during sampling at evening. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the PS2 activity in both leaf types at midday. Thus CN enhanced inactivation on the acceptor side of PS2 in grapevine leaves. Quantification of the PS2 reaction centre protein D1 following midday exposure of leaves showed pronounced differences between C and CN leaves. The marked loss of PS2 activity in CN leaves noticed in midday samples was mainly due to the marked loss of D1 protein of the PS2 reaction centre.  相似文献   

12.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2002,40(4):597-603
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein.  相似文献   

13.
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (P N), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems.  相似文献   

14.
Nedunchezhian  N.  Muthuchelian  K.  Bertamini  M. 《Photosynthetica》2000,38(4):607-614
Changes in various components of photosynthetic apparatus during the 6-d dark incubation at 25 °C of detached control and DCMU-treated Triticum aestivum L. leaves were examined. The rate of photosystem 2 (PS2) activity was decreased with increase of the time of dark incubation in control leaves. In contrast to this, DCMU-treated leaves demonstrated high stability by slowing down the inactivation processes. Diphenyl carbazide and NH2OH restored the PS2 activity more in control leaves than in DCMU-treated leaves. Mn2+ failed to restore the PS2 activity in both control and DCMU-treated samples. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in dark incubated control leaves was primarily due to the loss of D1, 33, and 23 kDa extrinsic polypeptides and 28-25 kDa LHCP2 polypeptides.  相似文献   

15.
Barták  M.  Raschi  A.  Tognetti  R. 《Photosynthetica》1999,37(1):1-16
Photosynthetic parameters were studied in Arbutus unedo L. trees growing at either ambient (AC) or elevated EC (mean 465 μmol mol-1) CO2 concentration near a natural CO2 vent in Orciatico, Italy Diurnal courses of net photosynthetic rate (P N), ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), and quantum yield of electron transport through photosystem 2 (Φ2) were measured on sun and shade leaves. The contents of N, C, Ca, K, P, and chlorophyll (Chl) and specific leaf area (SLA) in these leaf categories were also determined. A morning peak and midday depression of P N were found for both AC and EC sun leaves. Long-term EC caused little or no down-acclimation of P N in sum leaves. The estimate of total daily CO2 uptake was lower in AC leaves than in EC leaves. In shade leaves, it reached up to 70 % of the value of sun leaves. The Fv/Fm ratio showed decreasing trend in the morning, reached a minimum at midday (90 % of dawn value), and then increased in the afternoon. The EC had no effect on Fv/Fm either in sun or shade leaves. Plants grown near the CO2 spring had lower Chl content, higher SLA, and higher Ca and K contents than plants grown under AC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.  相似文献   

17.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2003,41(4):611-617
Photoinhibition of photosynthesis was investigated in grapevine (Vitis vinifera L.) exposed to 2 or 4h of high irradiance (HI) (1 700–1 800 mol m–2 s–1) leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined, F0 increased in both 2 (HI2) and 4 h (HI4) HI leaves sampled at midday. When various photosynthetic activities were followed on isolated thylakoids, HI4 leaves showed significantly higher inhibition of whole chain and PS2 activity than the HI2 leaves sampled at midday. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both variants of leaves, while DPC and NH2OH significantly restored PS2 activity in HI4 midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between HI2 and HI4 leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in HI2, while in HI4 it was mainly 33-kDa protein.  相似文献   

18.
Diurnal cycle of chlorophyll fluorescence parameters was done in Colocasia esculenta L. (swamp taro) grown in marshy land under sun or under shade. The sun leaves maintained higher electron transport rate (ETR) and steady state to initial fluorescence ratio (Fs/F0) than shade leaves. In spite of lower ETR, higher photochemical quenching (PQ), and effective quantum yield of photosystem 2 (ΦPS2) was evident in shade plants compared to plants exposed to higher irradiance. ETR increased linearly with increase in irradiance more under low irradiance (r 2 = 0.84) compared to higher irradiance (r 2 = 0.62). The maximum quantum yield of PS 2 (Fv/Fm) did not differ much in sun and shade leaves with the exception of midday when excess of light energy absorbed by plants under sun was thermally dissipated. Hence swamp taro plants adopted different strategies to utilize radiation under different irradiances. At higher irradiance, there was faster decline in proportion of open PS 2 centers (PQ) and excess light energy was dissipated through non-photochemical quenching (NPQ). Under shade, absorbed energy was effectively utilized resulting in higher ΦPS2.  相似文献   

19.
La Porta  N.  Bertamini  M.  Nedunchezhian  N.  Muthuchelian  K. 《Photosynthetica》2004,42(2):263-271
Photoinhibition of photosynthesis was studied in young and mature detached sun needles of cypress under high irradiance (HI) of about 1 900 mol m–2 s–1. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. Compared with the mature needles, the young needles, containing about half the amount of Chl a+b per unit area, exhibited a higher proportion of total carotenoids (Car) as xanthophyll cycle pigments and had an increased ratio of Car/Chl a+b. The potential efficiency of photosystem (PS) 2, Fv/Fm, markedly declined in HI-treated young needles without significant increase of F0 level. In contrast, the Fv/Fm ratio declined with significant increase of F0 level in mature needles. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in young HI-needles in comparison with mature needles. A smaller inhibition of PS1 activity was observed in both needles. In the subsequent dark incubation, fast recovery was found in both needle Types that reached maximum PS2 efficiencies similar to those observed in non-photoinhibited needles. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in mature needles, while DPC and NH2OH significantly restored it in young needles. Hence, HI-inactivation was on the donor side of PS2 in young needles and on the acceptor side of PS2 in mature needles. Quantification of the PS2 reaction centre proteins D1 and 33 kDa protein of water splitting complex following HI-exposure of needles showed pronounced differences between young and mature needles. The large loss of PS2 activity in HI-needles was due to the marked loss of D1 protein of the PS2 reaction centre in mature needles and of the 33 kDa protein in young needles.  相似文献   

20.
Characteristics of Photosynthetic Apparatus in Mn-Starved Maize Leaves   总被引:3,自引:0,他引:3  
Jiang  C.-D.  Gao  H.-Y.  Zou  Q. 《Photosynthetica》2002,40(2):209-213
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (P N) compared to control leaves. The loss of P N was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the high-energy fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号