首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monoclonal antibodies (MAs) to the RNA-dependent RNA polymerase from turnip yellow luteovirus (TYV) were prepared using a recombinant protein as immunogen and were shown to be directed to C-terminal part of the viral replicase. These MAs were found to interact with a 70-kDa protein found in extracts from TYV-infected plants. Our result is the first successful attempt at detecting the RNA-dependent RNA polymerase of a luteovirus in infected plant extracts. We also found that the protein is not processed further and its accumulation and content in the infected plant obey a definite dynamics during the infection. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

2.
Total nucleic acids from sporulated oocysts of Eimeria tenella isolated from Changchun in China were found to contain three extrachromosomal double-stranded RNA segments (dsRNAs) of 1.4, 2.4 and 3.6 kb in sizes. These RNAs were resistant to RNase A digestion under high salt concentration (0.3 M NaCl). RNA-dependent RNA polymerase (RDRP) activity was detected in crude extracts of E. tenella sporulated oocysts containing these nucleic acid species. Virus-like particles (VLPs) were shown to have a diameter of approximately 38 nm under Electron Microscopy (EM) after purification by sucrose density gradient centrifugation. In keeping with the nomenclature generally adopted for protozoan viruses, we have named this isolate as E. tenella virus (ETV) which is the first virus isolated from E. tenella.  相似文献   

3.
Three of 10 monoclonal antibodies (MAbs) produced to potato leafroll luteovirus (PLRV) were found to react in triple antibody sandwich ELISA (TAS-ELISA) with groundnut rosette assistor luteovirus (GRAV), though none reacted with four other luteoviruses (barley yellow dwarf, bean leaf roll, beet western yellows or carrot red leaf)- The most effective PLRV MAb, SCR 6, was used in TAS-ELISA to detect isolates of GRAV from groundnut plants with chlorotic, green and mosaic forms of rosette from Nigeria and Malawi. The test also detected GRAV in extracts of single Aphis craccivora.  相似文献   

4.
Coding sequences for a hammerhead ribozyme designed to cleave lexA mRNA in a targeted manner was cloned under phage T7 promoter and expressed in E. coli strain BL-21 (DE3) expressing T7 RNA polymerase under the control of IPTG-inducible lac UV-5 promoter. Ribozyme expression in vivo was demonstrated by RNase protection assay. Also, total RNA extracted from these transformed cells following induction by IPTG, displays site-specific cleavage of labeled lexA RNA in an In vitro reaction. The result demonstrates the active ribozyme in extracts of cell transformed with a recombinant cassette and goes beyond the earlier demonstration of the stability of In vitro synthesized ribozyme in cell extracts. The observed rise in lexA mRNA rules out any role for protease activity or resulting fragments of lexA protein in de-repression of RNA. (Mol Cell Biochem 271: 197–203, 2005)  相似文献   

5.
6.
Heinz Hahn 《Planta》1982,154(1):53-59
The DNA-dependent RNA polymerases I, II, and III (ribonucleosidetriphosphate: RNA nucleotidyl-transferase, EC 2.7.7.6) from Achlya ambisexualis E87 (male), have been isolated. The highly purified RNA polymerase I was found to be composed of polypeptides with the following molecular weights (·10-4): 18.5, 14, 11.8, 7.3, 6.1, 4.9, 4.4, 2.8. RNA polymerase II showed a 400-fold higher resistance against -amanitin than mammalian or higher plant RNA polymerase II.  相似文献   

7.
We have cloned and sequenced the gene encoding the largest subunit of RNA polymerase II (RPB1) from Arabidopsis thaliana and partially sequenced genes from soybean (Glycine max). We have also determined the nucleotide sequence for a number of cDNA clones which encode the carboxyl terminal domains (CTDs) of RNA polymerase II from both soybean and Arabidopsis. The Arabidopsis RPB1 gene encodes a polypeptide of approximately 205 kDa, consists of 12 exons, and encompasses more than 8 kb. Predicted amino acid sequence shows eight regions of similarity with the largest subunit of other prokaryotic and eukaryotic RNA polymerases, as well as a highly conserved CTD unique to RNA polymerase II.The CTDs in plants, like those in most other eukaryotes, consist of tandem heptapeptide repeats with the consensus amino acid sequence PTSPSYS. The portion of RPB1 which encodes the CTD in plants differs from that of RPB1 of animals and lower eukaryotes. All the plant genes examined contain 2–3 introns within the CTD encoding regions, and at least two plant genes contain an alternatively spliced intron in the 3 untranslated region. Several clustered amino acid substitutions in the CTD are conserved in the two plant species examined, but are not found in other eukaryotes. RPB1 is encoded by a multigene family in soybean, but a single gene encodes this subunit in Arabidopsis and most other eukaryotes.  相似文献   

8.
20S RNA is a noninfectious viral single-stranded RNA found in most laboratory strains of the yeast Saccharomyces cerevisiae. 20S RNA encodes a protein of 91 kDa (p91) that contains the common motifs found among RNA-dependent RNA polymerases from RNA viruses. p91 and 20S RNA are noncovalently associated in vivo, forming a ribonucleoprotein complex. We detected an RNA polymerase activity in p91/20S RNA complexes isolated by high-speed centrifugation. The activity was not inhibited by actinomycin D nor alpha-amanitin. The majority of the in vitro products was 20S RNA and the rest was the complementary strands of 20S RNA. Because the extracts were prepared from cells accumulating 20S RNA over its complementary strands, these in vitro products reflect the corresponding activities in vivo. When the p91/20S RNA complexes were subjected to sucrose gradient centrifugation, the polymerase activity cosedimented with the complexes. Furthermore, an RNA polymerase activity was detected in the complex by an antibody-linked polymerase assay using anti-p91 antiserum, suggesting that p91 is present in the active RNA polymerase machinery. These results together indicate that p91 is the RNA-dependent RNA polymerase or a subunit thereof responsible for 20S RNA replication.  相似文献   

9.
In preparation for the isolation and biochemical characterization of putative RNA polymerase mutants, DNA-dependent RNA polymerases of Drosophila melanogaster adults were isolated and partially characterized. Approximately 70% of the female adult RNA polymerase is located in ovaries. Multiple forms of ovarian RNA polymerases I and II are separable by DEAE-Sephadex chromatography. The two forms of RNA polymerase II differ in ammonium sulfate optima. RNA polymerase IIA is more active with double-stranded DNA as template, whereas RNA polymerase IIB transcribes single-stranded DNA most efficiently. Rechromatography of RNA polymerase IIA on DEAE-Sephadex results in the loss of ability of this form to transcribed double-stranded DNA most efficiently. Ovariectomized carcasses have two forms of RNA polymerase I and one form of RNA polymerase II and each transcribes single-stranded DNA most efficiently. As judged by gel filtration chromatography, female adult extracts have forms of RNA polymerase II that differ in molecular weight and template preference.Supported by Grants GM23456 from the NIH and 11259 from the City University Research Foundation.  相似文献   

10.
11.
Prune dwarf virus (PDV) is an Ilarvirus systemically infecting almond trees and other Prunus species and spreading through pollen, among other means. We have studied strategies based on coat protein (cp) gene to block PDV replication in host plant cells. A Portuguese isolate of PDV was obtained from infected almond leaves and used to produce the cDNA of the cp gene. Various constructs were prepared based on this sequence, aiming for the transgenic expression of the original or modified PDV coat protein (cpPDVSense and cpPDVMutated) or for the expression of cpPDV RNA (cpPDVAntisense and cpPDVwithout start codon). All constructs were tested in a PDV host model, Nicotiana benthamiana, and extensive molecular characterization and controlled infections were performed on transformants and their progenies. Transgenic plants expressing the coat protein RNA were able to block the proliferation of a PDV isolate sharing only 91% homology with the isolate used for cpPDV cloning, as evaluated by DAS-ELISA on newly developed leaves. With cp expression, the blockage of PDV proliferation in newly developed leaves was only achieved with the construct cpPDV Mutated, where the coat protein has a substitution in the 14th aa residue, with arginine replaced by alanine. This result points to a possible role of the mutated amino acid in the virus ability to replicate and proliferate. This work reveals the possibility of achieving protection against PDV through either coat protein RNA or mutated cp sequence.  相似文献   

12.
The non-structural protein encoded by the M RNA segment (NSm) of tomato spotted wilt virus (TSWV) has been implicated in cell-to-cell movement of nucleocapsids through modified plasmodesmata. Recently, DnaJ-like proteins from Nicotiana tabacum (tobacco) and Arabidopsis thaliana have been identified as NSm interacting host proteins, implying an involvement of molecular chaperones during systemic spread of the virus or other, presently unknown NSm-mediated virus functions. Examination of additional TSWV host plants and improvement of yeast two-hybrid interaction trap experiments led to the isolation of a DnaJ-like protein from Lycopersicon esculentum (tomato) and the identification of a protein from A. thaliana sharing some homologies with myosin and kinesin-like polypeptides. Sequence alignments of the tomato DnaJ-like protein unveiled the corresponding gene as an orthologue to the tobacco and A. thaliana DnaJ genes, substantiating that NSm interacting DnaJ-like polypeptides, identified from three different TSWV host species, apparently form a subgroup distinct from archetypical DnaJ chaperones. Increased levels of DnaJ-like proteins could be detected in TSWV systemically infected leaves and in plants exposed to heat shock, showing that the NSm interacting DnaJ-like chaperones are inducible upon biotic and abiotic stress. All together, the identification of DnaJ-like proteins and a protein resembling myosin and kinesin as NSm interacting plant proteins is in accordance with results accomplished for movement proteins from other plant attacking viruses showing an involvement of molecular chaperones and the cytoskeleton in at least intracellular trafficking.  相似文献   

13.
Raymond Miassod  Claude Got 《Planta》1984,162(5):427-433
A polyclonal antiserum was raised against highly purified RNA polymerase II from soybean embryos. Pure RNA polymerase II was fractionated on sodium dodecyl sulfate-polyacrylamide gels and transferred onto nitrocellulose sheets, incubated with the immune antiserum and then with iodinated protein A. Autoradiograms showed that the immune antiserum recognized all subunits of RNA polymerase II. Subunits 42, 27 and 16 kdalton were particularly reactive. Application of this transfer technique to protein extracts from soybean embryos or from cultured soybean cells allowed the identification of subunits of RNA polymerase II in the extracts. Analysis of the staining of the bands on the autoradiograms for increasing amounts of pure RNA polymerase II demonstrated that the transfer was quantitative, so that standard curves could be drawn to estimate the unknown amounts of enzyme in the extracts.Abbreviations DEAE diethylaminoethyl - SDS sodium dodecyl sulfate  相似文献   

14.
Double-stranded RNAs (dsRNAs) associated with chloroplasts and mitochondria have been found in the coenocytic green alga Bryopsis cinicola. In this study we report molecular properties of the four chloroplast-associated dsRNAs (BDRC1 to BDRC4) The longest dsRNA molecule (BDRC1) was sequenced entirely (1959 bp) and a single large ORF of 1722 bp was found within it. Database searches revealed similarities between the deduced amino acid sequence of this ORF and RNA-dependent RNA polymerase (RdRp) sequences from several RNA viruses. The most similar sequence in the database was the RdRp of beet cryptic virus 3. Phylogenetic analysis revealed that the RdRp-like sequence of BDRC1 can be placed in the Partitiviridae clade. To detect autonomous replication of these dsRNAs, RdRp assays were carried out with actinomycin D, which is an inhibitor of DNA-dependent RNA synthesis. Incorporation of [-32P]UTP was detected specifically in the chloroplast and mitochondrial dsRNAs, indicating that both the chloroplast dsRNAs (BDRCs) and the mitochondrial dsRNA (BDRM) of B. cinicola are RNA replicons. The green alga B. cinicola harbors different dsRNA replicons in its chloroplasts and mitochondria.  相似文献   

15.
Choice tests with whole plants and leaf discs indicated that fourth instar Spodoptera exigua (Hübner) (Noctuidae: Amphypyrini) were found more frequently and ate significantly more of the weed Chenopodium murale than the associated crop plant Apium graveolens. In order to explain the preference, plant extracts, plant volatiles, soluble protein concentrations, water contents, and leaf toughness of the two plants were investigated. Bioassays of aqueous methanol (90%) and hexane extracts of leaves on cellulose discs indicated that neither attractants in C. murale nor repellents in A. graveolens could account for the observed preference. No significant difference could be found between the effects of plant volatiles from C. murale, A. graveolens and a control on larval dispersal by S. exigua. Selective feeding for higher levels of proteins also was not a factor, because A. graveolens had nearly twice the soluble protein of C. murale. Water content was approximately 6% higher (by weight) in C. murale than A. graveolens but most polyphagous larvae do not typically show compensatory feeding for water alone. However, the potentially related characteristic of leaf toughness was significantly different, with A. graveolens exhibiting 1.53 times the toughness of C. murale. Studies comparing five types of larval behavior on both plant species showed that the time spent in swallowing behavior was significantly greater on the tougher A. graveolens leaves relative to C. murale. To test the hypothesis that leaf toughness was affecting larval host choice, both plants were finely ground and incorporated into agar blocks. No differences in feeding behavior were detected. The implications of leaf toughness for larval diet and host choice are discussed.  相似文献   

16.
Encephalomyocarditis (EMC) virus RNA-dependent RNA polymerase was expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST), which allowed easy purification of the fusion protein by affinity chromatography on immobilized glutathione. Inclusion of a thrombin cleavage site between the GST carrier and the viral enzyme facilitated the release of purified mature EMC virus RNA polymerase from the GST carrier by proteolysis with thrombin. The purified recombinant enzyme has a molecular mass of about 52 kDa and is recognized by polyclonal immune serum raised against a peptide sequence corresponding to the C-terminal region of the protein. The recombinant enzyme comigrates with immunoprecipitated EMC virus RNA polymerase from infected mouse L929 cell extracts when run in parallel lanes on a sodium dodecyl sulfate-polyacrylamide gel. The enzyme exhibits rifampin-resistant, poly(A)-dependent poly(U) polymerase activity and RNA polymerase activity, which are both oligo(U) dependent. Template-size products are synthesized in in vitro reactions with EMC virus genomic RNA or globin mRNA. The availability of recombinant EMC virus RNA polymerase in a purified form will allow biochemical analysis of its role in the replication of the virus as well as structure-function studies of this unique class of enzyme.  相似文献   

17.
A polymerase chain reaction (PCR)-based assay was used to detect pelargonium flower break carmovirus (PFBV) in total RNA extractions made from infected Pelargonium plants. Extracts were reverse transcribed (RT) and the resultant cDNA was amplified by PCR, using oligonucleotide primers specific for 343, 510 and 832 base pair fragments of the RNA-dependent RNA polymerase gene of PFBV.
The specificity and sensitivity of RT-PCR were compared with the enzyme-linked immunosorbent assay (ELISA) for the detection of PFBV in Pelargonium tissues. The virus could be detected efficiently in high dilutions of sap from infected plants and at low concentrations of purified virus. Although ELISA is a powerful tool for virus detection, RT-PCR was over 1000 times more sensitive in detecting PFBV in leaf extracts of infected Pelargonium than was ELISA. The limit of detecting PFBV RNA by RT-PCR was 200 fg, compared with 200 pg of virus by ELISA.  相似文献   

18.
RNA b is the most abundant member of a family of autonomously replicating single- and double-stranded RNA plasmids found in maize mitochondria. The extent to which this molecule is associated with proteins was investigated by rate zonal and CsCl equilibrium density gradient centrifugation of clarified lysates of S cytoplasm maize mitochondria. A soluble complex of RNA b, responsible for synthesis of the more abundant (+) RNA b strand in mitochondrial lysates, was identified. The complex had a buoyant density of 1.49 g/cm3, indicating a substantial non-nucleic acids content. The sedimentation coefficient of the complex, however, was only slightly larger than that of deproteinized RNA b. Synthesis of RNA b as well as the larger RNA plasmid, RNA a, was resistant to heparin, suggesting that, for both RNAs, preformed complexes between an RNA template and an RNA-dependent RNA polymerase capable of elongating in vivo preinitiated RNA plasmid strands, were present in the lysate. Only a small fraction of RNA b molecules were bound in the complex; the bulk of RNA b sedimented at the same rate as the deproteinized RNA. Thus, after replication, maize mitochondrial plasmids are not associated with nucleoprotein capsids although their synthesis takes place through ribonucleoprotein replication complexes.  相似文献   

19.
20.
A poliovirus-specific RNA-dependent RNA polymerase was isolated from a cytoplasmic extract of infected HeLa cells and was shown to copurify with a single virus-specific protein. The polymerase was isolated from cells labeled with [35S]-methionine and was fractionated from other soluble cytoplasmic proteins by ammonium sulfate precipitation, phosphocellulose chromatography, gel filtration on Sephacryl S-200, and chromatography on hydroxylapatite. The activity of the enzyme was measured by using either polyadenylic acid or poliovirion RNA as a template in the presence of an oligouridylic acid primer. A single virus-specific protein that had an apparent molecular weight of 63,000 (p63) was found to copurify with this activity. Host-coded proteins were present in reduced molar amounts relative to p63. Noncapsid viral protein 2 (NCVP2) and other viral proteins were clearly separated from p63 by gel filtration on Sephacryl S-200. Polymerase activity coeluted from the column precisely with p63. NCVP2 was totally inactive as an RNA polymerase and did not stimulate the polymerase activity of p63. The purified enzyme sedimented at about 4S on a glycerol gradient and thus appeared to be a monomer of p63. Two-dimensional gel electrophoresis of the polymerase protein indicated that it had an isoelectric point of about 7.5. Thus, the viral polypeptide, p63, as defined by the above physical parameters, is an RNA-dependent RNA polymerase that can copy poliovirion RNA when oligouridylic acid is used as a primer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号