首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sulphate metabolizing centre in Euglena mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have previously shown that a sulphate activating system is present on the outside of the inner mitochondrial membrane of Euglena gracilis Klebs. var. bacillaris Cori, but efforts to couple this system to ATP produced from oxidative phosphorylation were unsuccessful. In the present work we show that the concentration of Pi ordinarily used to support oxidative phosphorylation in these mitochondria (10 mM) inhibits sulphate activation completely; by reducing the concentration of Pi 10-fold, both processes proceeded normally. Sulphate activation under these conditions is inhibited nearly completely by the uncouplers of oxidative phosphorylation dinitrophenol (0.1 mM) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) (0.2 microM). Sulphate reduction to form free cysteine, most of which appears outside the organelle, and in the cysteine of mitochondrial protein can be demonstrated in the same preparations, is membrane-bound and is inhibited by chloramphenicol (100 micrograms/ml), NaN3 (5 mM), KCN (100 microM); dinitrophenol (0.1 mM) or CCCP (0.2 microM). Digitonin fractionation of the mitochondria into mitoplasts, outer membranes and an intermembrane fraction show that reduction of 35SO4(2-) to form free cysteine and cysteine of protein is located on the mitoplasts; adenosine 5'-phosphosulphate sulphotransferase, the first enzyme of sulphate reduction, is found in the same location. Sulphate activation is highly enriched in the mitochondrial fraction of Euglena; the small amount found in the chloroplast fraction can be attributed to mitochondrial contamination. Thus, in Euglena, sulphate activation and reduction are contained in a sulphate metabolizing centre on the outside of the mitochondrial inner membrane; this centre appears to supply the mitochondrion and the rest of the cell with the products of sulphate activation as well as with reduced sulphur in the form of cysteine. Mitochondria from wild-type Euglena cells and from W10BSmL, a mutant lacking plastids completely, appear to be similar in the properties studied.  相似文献   

2.
1. Sulphate-dependent PP(i)-ATP exchange, catalysed by purified spinach leaf ATP sulphurylase, was correlated with the concentration of MgATP(2-) and MgP(2)O(7) (2-); ATP sulphurylase activity was not correlated with the concentration of free Mg(2+). 2. Sulphate-dependent PP(i)-ATP exchange was independent of PP(i) concentration, but dependent on the concentration of ATP and sulphate. The rate of sulphate-dependent PP(i)-ATP exchange was quantitatively defined by the rate equation applicable to the initial rate of a bireactant sequential mechanism under steady-state conditions. 3. Chlorate, nitrate and ADP inhibited the exchange reaction. The inhibition by chlorate and nitrate was uncompetitive with respect to ATP and competitive with respect to sulphate. The inhibition by ADP was competitive with respect to ATP and non-competitive with respect to sulphate. 4. ATP sulphurylase catalysed the synthesis of [(32)P]ATP from [(32)P]PP(i) and adenosine 5'-sulphatophosphate in the absence of sulphate; some properties of the reaction are described. Enzyme activity was dependent on the concentration of PP(i) and adenosine 5'-sulphatophosphate. 5. The synthesis of ATP from PP(i) and adenosine 5'-sulphatophosphate was inhibited by sulphate and ATP. The inhibition by sulphate was non-competitive with respect to PP(i) and adenosine 5'-sulphatophosphate; the inhibition by ATP was competitive with respect to adenosine 5'-sulphatophosphate and non-competitive with respect to PP(i). It was concluded that the reaction catalysed by spinach leaf ATP sulphurylase was ordered; expressing the order in the forward direction, MgATP(2-) was the first product to react with the enzyme and MgP(2)O(7) (2-) was the first product released. 6. The expected exchange reaction between sulphate and adenosine 5'-sulphatophosphate could not be demonstrated.  相似文献   

3.
1. Synthesis of 3'-phosphoadenosine-5'-phosphosulphate from ATP and 35SO4(-2) was demonstrated by homogenates of gut. Malpighian tubules and fat body of Spodoptera littoralis. 2. The enzyme system was most active in the gut tissue, and was primarily located in the cytosol fraction of the cell. Gut cytosol preparations were used as a source of the 3'-phosphoadenosine-5'-phosphosulphate generating system for more detailed studies. 3. Maximum synthesis required an incubation mixture containing Tris/HCl buffer (pH 7.5), ATP (20 mM), MgCl2 (13.0 mM) and K2SO4 (3 mM). 4. The specific activity of 3'-phosphoadenosine-5'-phosphosulphate synthesizing activity in gut cytosol increased during development of the sixth instar larva, reaching a peak at day 4. A sudden fall in specific activity was observed in the prepupal stage. 5. 3'-Phosphoadenosine-5'-phosphosulphate formation is the rate limiting process in the overall sulphation of p-nitrophenol in the gut cytosol preparations from S. littoralis. 6. It is concluded that the properties of the sulphate-activating system in this insect are similar to those reported for vertebrates.  相似文献   

4.
Preservation of the oxidative phosphorylation capacity of mitochondria by addition of ATP under anaerobic conditions was analyzed by use of non-metabolizable adenine nucleotide analogs. The capacity was well preserved in the presence of ATP and did not require the hydrolysis of ATP, since ATP analogs, such as beta, gamma-methylene adenosine triphosphate (AMPPCP), alpha, beta-methylene adenosine triphosphate (AMPCPP), and adenylyl imidodiphosphate (AMPPNP), were as effective as ATP. These analogs were incorporated into mitochondria through ATP/ADP translocase to maintain the original level of total adenine nucleotides in the mitochondria. ADP apparently had the same effect as ATP, but its effect was shown to be due to ATP generated from it by adenylate kinase in mitochondria. An analog of ADP, alpha, beta-methylene adenosine diphosphate (AMPCP), which was found to be a substrate of the translocase but not of adenylate kinase, could not replace ADP or ATP. From these results, it was concluded that the oxidative phosphorylation capacity of mitochondria was maintained by ATP, but not ADP, through a process not requiring energy.  相似文献   

5.
The kinetic coupling of mitochondrial creatine kinase (MiMi-CK) to ADP/ATP translocase in chicken heart mitochondrial preparations is demonstrated. Measuring the MiMi-CK apparent Km value for MgATP2- (at saturating creatine) gives a value of 36 microM when MiMi-CK is coupled to oxidative phosphorylation. This Km value is threefold lower than the Km for enzyme bound to mitoplasts or free in solution. The nucleotide translocase Km value for ADP decreases from 20 to 10 microM in the presence of 50 mM creatine only with intact mitochondria. Similar experiments with mitoplasts do not give decreased Km values. The observed Km differences can be used to calculate the concentration of ATP and ADP under steady-state conditions showing that the observed differences in the kinetic constants accurately reflect the enzyme activities of MiMi-CK under the different conditions. The behavior of the Km values provides evidence for what we term compartmented coupling. Therefore, like the rabbit heart system (S. Erickson-Viitanen, P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman (1982) J. Biol. Chem. 257, 14395-14404) compartmented coupling requires an intact outer mitochondrial membrane. The apparent Km values for normal or compartmentally coupled systems can be used to calculate steady-state values of ATP and ADP by coupling enzyme theory. Hence, the overall kinetic parameters accurately reflect the behavior of the enzymes whether free in solution or in the intermembrane space.  相似文献   

6.
Adenosine diphosphate sulphurylase activity in leaf tissue   总被引:6,自引:3,他引:3       下载免费PDF全文
1. A new method is described for the assay of ADP sulphurylase. The method involves sulphate-dependent [(32)P]P(i)-ADP exchange; the method is simpler, more sensitive and more direct than the method involving adenosine 5'-sulphatophosphate-dependent uptake of P(i). 2. ADP sulphurylase activity was demonstrated in crude extracts of leaf tissue from a range of plants. Crude spinach extract catalysed the sulphate-dependent synthesis of [(32)P]ADP from [(32)P]P(i); spinach extracts did not catalyse sulphate-dependent AMP-P(i), ADP-PP(i) or ATP-P(i) exchange under standard assay conditions. ADP sulphurylase activity in spinach leaf tissue was associated with chloroplasts and was liberated by sonication. 3. Some elementary kinetics of crude spinach leaf and purified yeast ADP sulphurylases in the standard assay are described; addition of Ba(2+) was necessary to minimize endogenous P(i)-ADP exchange of the yeast enzyme and crude extracts of winter-grown spinach. 4. Spinach leaf ADP sulphurylase was activated by Ba(2+) and Ca(2+); Mg(2+) was ineffective. The yeast enzyme was also activated by Ba(2+). The activity of both enzymes decreased with increasing ionic strength. 5. Purified yeast and spinach leaf ADP sulphurylases were sensitive to thiol-group reagents and fluoride. The pH optimum was 8. ATP inhibited sulphate-dependent P(i)-ADP exchange. Neither selenate nor molybdate inhibited sulphate-dependent P(i)-ADP exchange and crude spinach extracts did not catalyse selenate-dependent P(i)-ADP exchange. 6. The presence of ADP sulphurylase activity jeopardizes the enzymic synthesis of adenosine 5'-sulphatophosphate from ATP and sulphate with purified ATP sulphurylase and pyrophosphatase.  相似文献   

7.
Particulate fractions of Thiobacillus denitrificans catalyse the phosphorylation of ADP to ATP during the oxidation of various inorganic sulphur compounds or NADH via an electron transport chain. On the other hand, a soluble cell-free fraction synthesized ATP from APS and inorganic phosphate.The production of ATP was verified either by the firefly luciferin-luciferase enzyme system or by the incorporation of 32Pi into ATP. During the oxidation of sulphide, sulphite and NADH the production of ATP from ADP by particulate fractions is inhibited by compounds that inhibit electron transfer and by uncouplers of oxidative phosphorylation. However, these compounds had little effect on the production of ATP from AMP during the oxidation of sulphite by the soluble fraction. NADH was the most effective electron donor for oxidative phosphorylation. The soluble fraction contained high activities of ATP sulphurylase, inorganic pyrophosphatase and adenylate kinase but ADP sulphurylase activity was relatively low. The effects of inhibitors on ATP production from APS and Pi are compared with those on adenylate kinase and ATP sulphurylase.Abbreviations APS adenosine-5-phosphosulphate - DNP 2,4-dinitrophenol - HOQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide  相似文献   

8.
The state of mitochondrial creatine kinase (CKmi-mi) in intact dog heart mitochondria and mitoplasts and the mechanism of its functional coupling with the oxidative phosphorylation system have been reinvestigated under different osmotic conditions and ionic compositions of the medium. It has been established that in a medium which mimics the cardiac cell cytoplasma, dissociation of CKmi-mi from the membrane of mitoplasts increases when the mitoplasts are swollen due to hypoosmotic treatment. It was shown by EPR that hypoosmotic treatment results in the enhancement of the mobility of phospholipids in the membrane bilayer. It has been also shown that when CKmi-mi is detached from the inner membrane in intact mitochondria in isotonic KCl solution, the effects of the coupling between CKmi-mi and oxidative phosphorylation via ATP/ADP translocase disappear in spite of the presence of CKmi-mi in the intermembrane space and intactness of the outer mitochondrial membrane. Therefore, this coupling cannot be explained by the "compartmented coupling" mechanism or "dynamic adenine nucleotide compartmentation" in the intermembrane space due to diffusion limitation for adenine nucleotides through the outer mitochondrial membrane, as has been supposed by several authors (F.N. Gellerich et al. (1987) Biochim. Biophys. Acta 890, 117-126; S.P.J. Brooks and C.H. Suelter (1987) Arch. Biochem. Biophys. 253, 122-132). The data obtained show that the displacement of the enzyme from the membrane results in significantly increased sensitivity of the coupled processes of aerobic phosphocreatine synthesis to inhibition by the product, phosphocreatine. Thus, all results show that under physiological osmotic and ionic conditions CKmi-mi remains firmly attached to the inner mitochondrial membrane and effectively coupled with ATP/ADP translocase due to intimate dynamic interaction between those proteins.  相似文献   

9.
In mitoplasts, respiratory stimulation by ADP, palmitate, DNP and CCCP and sensitivity of respiration to carboxyatractylate are considerably less pronounced than in mitochondria. Addition of porin-containing preparations (purified outer membranes or solubilized mitochondrial porin) to mitoplasts results in partial restoration of the oxygen consumption and sensitivity to carboxyatractylate (CAT). The uncoupling effect of FCCP in mitoplasts is CAT-resistant and does not depend on added porin. It is suggested that mitochondrial porin may be a natural activator of ADP/ATP antiporter and succinate carrier in mitochondria.  相似文献   

10.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

11.
The effect of externally applied L-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5'-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing L-cysteine to the nutrient solution increased internal cysteine, gamma-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm L-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm L-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of L-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm L-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using (35)SO(4)(2-) in the presence of 0.5 mm L-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.  相似文献   

12.
Production of adenosine 5'-[35S]sulphatophosphate by a partially purified ATP sulphurylase from Anabaena cylindrica was inhibited by AMP, ADP and P1. Decreases in enzyme activity in the presence of these inhibitors were reversed by increasing the concentrations of ATP. The adenine nucleotides inhibited the enzyme competitively with respect to ATP. In the presence of P1, ATP showed a positive co-operative effect on enzyme activity. The inhibition by P1 was enhanced by increasing concentrations of MG2+. The effects of the adenine nucleotides and the interaction of P1 and Mg2+ on ATP sulphurylase activity are discussed in relation to the regulation of sulphate assimilation via the energy metabolism of the alga.  相似文献   

13.
Mitochondria that have been purified from cells of light-grown wild-type Euglena gracilis Klebs var. bacillaris Cori or dark-grown mutant W10BSmL and incubated with 35SO4(2-) and ATP accumulate a labeled compound in the surrounding medium. This compound is also labeled when mitochondria are incubated with [14C]tyrosine and nonradioactive sulfate under the same conditions. This compound shows exact coelectrophoresis with synthetic tyrosine O-sulfate at pH 2.0, 5.8, and 8.0, and yields sulfate and tyrosine on acid hydrolysis. Treatment with aryl sulfatase from Aerobacter aerogenes yields sulfate and tyrosine but no tyrosine methyl ester; no hydrolysis of tyrosine methyl ester to tyrosine is observed under identical conditions, ruling out methyl esterase activity in the aryl sulfatase preparation. Thus the compound is identified as tyrosine O-sulfate. No tyrosine O-sulfate is found outside purified developing chloroplasts of Euglena incubated with 35SO4(2-) and ATP, but both chloroplasts and mitochondria accumulate labeled tyrosine-O-sulfate externally when incubated with adenosine 3'-phosphate 5'-phospho[35S]-sulfate (PAP35S). Since tyrosine does not need to be added, it must be provided from endogenous sources. Labeled tyrosine O-sulfate is found in the free pools of light-grown Euglena cells grown on 35SO4(2-) or in dark-grown cells incubated with 35SO4(2-) in light, but none is found in the medium after cell growth. No labeled tyrosine O-sulfate is found in Euglena proteins (including those in extracellular mucus) after growth or incubation of cells with 35SO4(2-) or after incubation of organelles with 35SO4(2-) and ATP or PAP35S, ruling out sulfation of the tyrosine in protein or incorporation of free-pool tyrosine O-sulfate into protein. The system forming tyrosine O-sulfate is membrane-bound and may be involved in transporting tyrosine out of the organelles.  相似文献   

14.
Measurements of ATP in mammalian cells   总被引:8,自引:0,他引:8  
Levels of phosphorylated adenosine nucleotides, including the universal energy carrier adenosine 5(')-triphosphate (ATP) and its metabolites adenosine 5(')-diphosphate (ADP) and adenosine 5(')-monophosphate (AMP), define the energy state in living cells and are dependent mainly on mitochondrial function. In this article, we describe a method based on the luciferase-luciferin system used to measure mitochondrial ATP synthesis continuously in permeabilized mammalian cells and mitochondria isolated from animal tissues. We also describe a technique that uses the expression of recombinant targeted luciferase to report ATP content in different cell compartments. Finally, we describe an HPLC-based method for accurate measurement of ATP, ADP, and AMP in cultured cells and animal tissues.  相似文献   

15.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

16.
The bulk of NADH kinase of Saccharomyces cerevisiae was recovered in the mitochondrial fraction prepared from spheroplasts. Most of the NADH kinase was localized in the inner membrane fraction, which was separated from other mitochondrial components by the combined swelling, shrinking, and sonication procedure. Treatment of mitoplasts with antiserum against the NADH kinase caused inactivation of the enzyme. On the contrary, no influence was observed upon the same treatment of intact mitochondria. p-Chloromercuribenzoate and eosin-5-maleimide inactivated the enzyme without affecting the matrix ATPase. The NADH kinase was enzymatically iodinated in mitoplasts, but not in the intact mitochondria. These results support the conclusion that NADH kinase is localized and functions at the intermembrane space side of the mitochondrial inner membrane. It is evident that the NADH kinase is encoded by nuclear gene(s) because it is synthesized in the presence of chloramphenicol or acriflavine, and a significant amount of the enzyme was detected in mitochondrial DNA-deficient mutants.  相似文献   

17.
In the present paper the mechanism of the adenosine formation by a mixture of nerve ending and transmitter granula fractions was invesitgated. The adenosine formation in vivo is only possible via the whole degradation chain ATP - ADP - AMP - adenosine. The enzymes involved are ATPases, adenylate kinase and 5'-nucleotidase. The ATPase and adenylate kinase effectors Ca++ and Mg++ can be regarded as trigger ions switching on and off the degradation chain. The adenylate kinase represents a key enzyme within the whole chain. In the ion-activated state a non-inhibited adenosine formation was observed, when the initial ATP concentration amounted to less than 0,1 muMol per mg synaptosomal membrane protein. Under these conditions the whole chain velocity is mainly dependent on the 5'-nucleotidase concentration, because ATPases and adenylate kinase remove the nucleotidase inhibitors ATP and ADP spontanously. The conditions for the optimal velocity of the adenosine formation at the synaptic membrane in vivo in all probability are present. A hypothesis for the mechanism of the synaptic adenosine formation in vivo was developed. The importance of this process in respect to the synaptic transmission was discussed.  相似文献   

18.
Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.  相似文献   

19.
Both isolated brain mitochondria and mitochondria in intact neurons are capable of accumulating large amounts of calcium, which leads to formation in the matrix of calcium- and phosphorus-rich precipitates, the chemical composition of which is largely unknown. Here, we have used inhibitors of the mitochondrial permeability transition (MPT) to determine how the amount and rate of mitochondrial calcium uptake relate to mitochondrial morphology, precipitate composition, and precipitate retention. Using isolated rat brain (RBM) or liver mitochondria (RLM) Ca(2+)-loaded by continuous cation infusion, precipitate composition was measured in situ in parallel with Ca(2+) uptake and mitochondrial swelling. In RBM, the endogenous MPT inhibitors adenosine 5'-diphosphate (ADP) and adenosine 5'-triphosphate (ATP) increased mitochondrial Ca(2+) loading capacity and facilitated formation of precipitates. In the presence of ADP, the Ca/P ratio approached 1.5, while ATP or reduced infusion rates decreased this ratio towards 1.0, indicating that precipitate chemical form varies with the conditions of loading. In both RBM and RLM, the presence of cyclosporine A in addition to ADP increased the Ca(2+) capacity and precipitate Ca/P ratio. Following MPT and/or depolarization, the release of accumulated Ca(2+) is rapid but incomplete; significant residual calcium in the form of precipitates is retained in damaged mitochondria for prolonged periods.  相似文献   

20.
Direct photoaffinity labeling with radioactively labeled adenosine 3'-phosphate 5'-phosphosulfate (PAPS) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography was used to identify PAPS binding proteins in a Golgi membrane preparation of bovine adrenal medulla. [3'-32P]PAPS was synthesized from adenosine 5'-phosphosulfate (APS) and [gamma-32P]ATP using APS kinase prepared from yeast and was purified by reverse-phase ion pair high performance liquid chromatography. Upon irradiation with UV light, [3'-32P]PAPS, as well as [35S]PAPS under conditions which minimized sulfotransferase-catalyzed incorporation of 35SO4 from [35S]PAPS into proteins, bound selectively to a 34-kDa protein of the Golgi membrane preparation. PAPS binding to the 34-kDa protein was strongly inhibited by the presence of 50 microM atractyloside. The 34-kDa PAPS binding protein therefore appears to be similar to the mitochondrial ATP/ADP translocator with regard to both molecular weight and inhibition by atractyloside of adenine nucleotide binding. Photoaffinity labeling will be useful in the purification and functional identification of the 34-kDa protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号