首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

2.
湖北四湖泊营养类型与轮虫群落的关系   总被引:13,自引:1,他引:12  
对湖北梁子湖水系不同营养类型(中营养型、富营养型)4个湖泊中轮虫的群落结构和物种多样性进行了周年研究,分析比较了不同营养类型湖泊的轮虫种类组成、分布、优势种组成、密度、生物量和多样性指数。结果表明:轮虫的种类数、物种多样性与营养水平呈负相关关系,轮虫密度大体上随营养水平提高而增大,富营养化引起轮虫空间异质性降低,受污染湖泊与非污染湖泊轮虫种类数、寡污性种类数及分布差异尤为明显。用多样性指数评价湖泊营养状态与TLIc方法一致。  相似文献   

3.
Summary The structure and seasonal dynamics of phytoplankton communities in the littoral zone were compared between oligotrophic and eutrophic lakes in the southeastern United States. Differences in diversity and species composition between lakes could be ascribed to long-term variation in nutrients corresponding to trophic status. However, significant within-lake variation could not be accounted for by microstratification of nutrients or other abiotic variables. Local biotic factors, perhaps dominated by the spawning activities of centrarchid fishes, resuspend periphyton and generate tychoplankton which becomes a persistent and integral part of the phytoplankton community in eutrophic systems. The patchy distribution of these biotic factors and resultant tychoplankton may lead to the observed variation. Grazing by herbivorous zooplankton was considered to be the major factor affecting the relative abundance of phytoplankton in the littoral zone, completely overriding the effects of nutrient concentration and biotic interactions between phytoplankton species during spring and summer.The relative importance of tychoplankton and grazing as regulatory factors operates independently of the trophic status or geographical location of a lake, making comparisons of different studies difficult and perhaps meaningless if traditional analyses based only on nutrients and interactions between species of phytoplankton are used. Limnetic as well as littoral components must be considered in future studies of phytoplankton communities in the littoral zone.  相似文献   

4.
Maina, J.G. 2000. Inter-lake movements of the Lesser Flamingo Phoeniconaias minor and their conservation in the saline lakes of Kenya. Ostrich 71 (1 & 2): 126.

The Lesser Flamingo Phoeniconaias minor is the only algivore in the saline lakes of Kenya occurring in spectacular assemblages that form the tourism base. The flamingos show unpredictable, spontaneous, “nomadic” movements between the saline lakes whose precipitating ecological factors were not well established. Food, conductivity, breeding, predation and fresh water availability were regarded as the primary factors in spite of their global coverage in explaining animal movements. Evidence is emerging that food, especially algal species composition, density, and lake levels are the primary driving factors for these inter-lake movements, with other factors being consequences of these. Algal species composition and lake levels are subject to limnological processes in the lakes, climatic conditions and human activities in the catchment of the saline lakes. Environmental degradation is now a critical factor influencing the limnology of these fragile ecosystems with far ranging consequences on lake levels, algal species composition and succession. These changes determine flamingo utilization patterns within and between the lakes. This calls for a review of the conservation status and management of the saline lakes, home to a few but highly specialised species.  相似文献   

5.
Brett  Michael T. 《Hydrobiologia》1989,(1):181-189
The structure of the rotifer community in relation to lake pH, trophic status, the type of planktivore assemblage and the crustacean community was assessed in a survey of 23 lakes ranging in pH from 4.4 to 7.3, and in a study of two lakes — one acidic, the other circumneutral — during two summers. In both investigations the number of rotifer species encountered per sample was strongly reduced with pH. Although the reason for this is not clear acid-stress, the ultraoligotrophic nature of the acidic lakes, and competitive interactions with crustacean zooplankters may all have played a role. More importantly the ecological significance of this relationship is not known. The rotifer Keratella taurocephala was a principle species in the most acidic lakes, while several common rotifers were notably absent from these lakes. Although rotifer abundance was correlated with lake pH, the results of this study indicate that rotifer abundance is not a result of lake pH per se, but of lake trophic status and interactions with the crustacean community.  相似文献   

6.
The submerged aquatic vascular vegetation was studied in the Finger Lakes and in two bays of Lake Ontario in northern New York State, U.S.A. The species composition, structure and biomass of the communities are related to the principal habitat factors such as trophic status of the lakes, bottom slope and substrate, current and stream effects, and depth. A record of the development of changes in the trophic status of the lakes and in the species composition of their submerged vascular vegetation is outlined. An attempt is made to assess the effects of catastrophic events (floods and cloudbursts in the watershed) on the lake vegetation.  相似文献   

7.
Defining the overall ecological status of lakes according to the Water Framework Directive (WFD) is to be partially based on the species composition of the aquatic macrophyte community. We tested three assessment methods to define the ecological status of the macrophyte community in response to a eutrophication pressure as reflected by total phosphorus concentrations in lake water. An absolute species richness, a trophic index (TI) and a lake trophic ranking (LTR) method were tested at Europe-wide, regional and national scales as well as by alkalinity category, using data from 1,147 lakes from 12 European states. Total phosphorus data were used to represent the trophic status of individual samples and were plotted against the calculated TI and LTR values. Additionally, the LTR method was tested in some individual lakes with a relatively long time series of monitoring data. The TI correlated well with total P in the Northern European lake types, whereas the relationship in the Central European lake types was less clear. The relationship between total P and light extinction is often very good in the Northern European lake types compared to the Central European lake types. This can be one of the reasons for a better agreement between the indices and eutrophication pressure in the Northern European lake types. The response of individual lakes to changes in the abiotic environment was sometimes represented incorrectly by the indices used, which is a cause of concern for the use of single indices in status assessments in practice.  相似文献   

8.
《Aquatic Botany》2001,69(2-4):177-193
The eutrophication of lakes in central Europe has been assumed to be at least partly responsible for a widespread die-back of fringing Phragmites australis reeds. To test the ‘eutrophication hypothesis’ on a broad data basis, lakeshore reed stands at 41 lakes of known trophic status and 10 stands in waste water and sludge treatment plants in Denmark and north Germany (North data subset, n=26), and south Germany, Switzerland and Austria (South data subset, n=25) were investigated. A total of 24 culm performance variables in three different shoot classes were analyzed by two-way ANOVA with the geographic origin and the ‘relative trophic index’ as factors. The geographic origin had a pronounced influence on culm architecture, whereas the effect of the trophic level mostly failed to be significant in the ANOVA. The culms from the North reed stands showed a weaker performance throughout than those from the South stands for a given trophic level. However, some of the morphometric traits in the North stands were significant positively correlated with the trophic level but very few significant cases were observed in the South data subset. Three hypotheses are discussed to explain the geographic effect: climatic effects, geochemistry of lake water and sediments, and trophic history of the lakes. It is concluded that lake eutrophication does not influence the culm performance negatively and that eutrophication cannot be regarded as a general cause in reed decline.  相似文献   

9.
10.
The author analyses trophic structure of macro invertebrates inhabiting samples of litter settled (deciduous leaves) in three small lakes with different hydrochemical characters. In acid lake predators and detritovores-collectors are dominant, in slightly acid lake predators, detritovores-filtrators and collectors are the main types. Trophic structure of acid lakes is formed by acid-tolerant species adopted to low pH. In slightly acid lakes circumneutral species are developed. It was shown that trophic structure is formed mainly under influence of biotic factors and is not strongly depended on pH and trophic levels. Vertical distribution of organisms is determined by oxygen regime.  相似文献   

11.
A cross-system, worldwide approach has been used to ascertainthe spatial, seasonal and long-term variability of areal phytoplanktonphotosynthesis (PP) in lakes using published data sets. Also,the average fraction of annual PP occurring under ice is calculated.The lakes considered embrace a range of properties (depth, mixing,flushing rate, latitude and trophic status). The overall yearlyPP distribution is skewed to the left, suggesting the dominanceof low PP rates in the data set. When comparing lake types,no differences in average PP have been found among them. Inparticular, there are no clear areal PP differences among lakesof different trophic status on yearly, averaged basis, suggestingthat environmental limitations to PP also exist in lakes ofhigher trophic status. Volumetric-based PP can be better usedto outline PP-based trophic differences, but some degree ofoverlap is also apparent. Across all lake types (except in tropicallakes), the PP seasonal course experiences only one peak inthe year, but its timing is clearly different for each laketype. The seasonal variability of PP is lower in tropical lakes,as previously reported, but the variability of the other laketypes is roughly the same. Therefore, the effects of depth,mixing regime, flushing rate and nutrient status on PP seasonalityare difficult to ascertain since they appear to be counterbalancedby other more pervasive, local effects. Particularly, thereis no increase in temporal variability with the trophic statusof lakes, suggesting that PP seasonal control by physical variablesoverrides that of nutrients. Also, no significant relationshipbetween average PP and latitude has been found. Seasonal variabilityincreases as the yearly PP increases. On a relative basis, thereis a spatial gradient of seasonal variability of PP, which isweaker when seasonal variability of PP is considered in interyearcomparisons. Long-term (i.e. interannual) variability of PPis clearly related to increasing yearly averaged PP. Specifically,in temperate, stratifying lakes the seasonal time course ofPP is clearly different from that of phytoplankton biomass,suggesting an uncoupling of both variables as a result of differingPmax and losses throughout the year. On an average basis, environmentalvariables are poor predictors of areal daily PP, thereby implyingthat the interplay of factors is complex and changing throughoutthe year. PP under ice averages 10% of yearly PP, but its variabilityis high enough to make its measurement advisable.  相似文献   

12.
Duggan  Ian C.  Özkundakci  Deniz  David  Bruno O. 《Aquatic Ecology》2021,55(4):1127-1142

Data collected on zooplankton community composition over longer time periods (>?10 years) are rare. We examined among-lake spatial and temporal trends of zooplankton communities from a monitoring programme undertaken in the Waikato region, New Zealand. A total of 39 lakes were sampled over a period of 12 years, between 2007 and 2019, with varying degrees of temporal effort. We focussed particularly on eight lakes, considered here as ‘long-term lakes’, where samples were collected with greater regularity (including 5 with 12 years of data). Among lakes, suspended sediment concentrations and indicators of lake trophic state were inferred to be important in determining the zooplankton distributions; as this region is dominated by shallow lakes, the relative importance of suspended sediments was high. Among the long-term lakes, the greatest dissimilarities in zooplankton community composition among years were in Lake Waahi, where the Australian Boeckella symmetrica was first detected in 2012. That is, the greatest temporal changes to zooplankton composition during the study period were due to the invasion by non-indigenous species, rather than changes in trophic state or other environmental variables; non-native species commonly dominated the individual counts of species through much of 2014 and 2015, with most samples since 2016 being again dominated by native species. Following this lake, the largest and shallowest lakes in the dataset—Whangape and Waikare—exhibited the greatest variability in community composition among years.

  相似文献   

13.
Species composition and interactions, biomass dominance, geographic distribution and driving variables were investigated for two key elements of the pelagic food web of Alpine lakes, the phytoplankton and the zooplankton, based on a single sampling campaign during summer 2000. Altogether, 70 lakes were surveyed, 49 of which located in three different lake districts of the west and eastern Italian Alps and 21 in the central Austrian Alps (within the uppermost Danube catchment). In addition to the analysis of environmental variables affecting distribution and species structure of the two planktonic compartments, a brief review of the main research lines and hypotheses adopted in the past for the study of phytoplankton and zooplankton in high Alpine lakes is given. The lakes, investigated partly within the European project EMERGE (EVK1-CT-1999-00032) and partly within a regional project in the eastern Alps, comprise a wide range of morphological, chemical and trophic conditions. The phytoplankton communities were found to be diverse and mostly dominated by flagellates (chrysophytes, cryptophytes and dinoflagellates), and only to a lesser extent by non-motile green algae, desmids and centric diatoms. The zooplankton communities were mainly dominated by Alpine cladocerans and copepod species, while rotifers were abundant within one group of Italian lakes (sampled in early summer). The multivariate statistical analyses (CCA) showed that catchment features (i.e. percentage of vegetation cover and geochemical composition) and nitrate concentration are essential drivers for the phytoplankton, whereas for zooplankton also trophic status of the lakes and phytoplankton structure are important. The combined variance analysis of the lake clusters outlined by the multivariate analyses on phytoplankton and zooplankton data, respectively, allowed the identification of four principal lake types (three located on siliceous and one on carbonaceous bedrock), each one characterised by a certain combination of habitat features, which in their turn influence trophic state, and phytoplankton and zooplankton species composition and functionality.  相似文献   

14.
Diatoms are commonly and frequently used as water quality indicators, but only a few studies have been done to evaluate the importance of littoral, contemporary diatoms as bioindicators. This study aims to determine the main predictors of diatom community composition from 73 Swedish lakes. Canonical correspondence analysis (CCA) revealed pH, phosphate, nitrite/nitrate levels, longitude and percentage of forest in the catchment to be the most important factors of 51 environmental variables for structuring diatom assemblages. Cluster analysis separated the lakes into three groups based on the diatom community composition. Lakes belonging to these groups were characterised as: (1) acidic, nutrient-poor; (2) circumneutral, nutrient-poor and (3) alkaline, nutrient-rich, according to the results of a discriminant function analysis and dominant diatom taxa revealed by similarity percentage analysis. Ecological guilds according to growth morphology and the ability of nitrogen-fixation were assigned to all diatom taxa. All three lake groups exhibited a distinct guild composition. Nitrogen-fixing diatoms were found in nutrient-rich lakes, only. Our results indicate that taxonomical composition of littoral diatom assemblages can be applied in the assessment of nutrient and acidity status of Swedish lakes. Differences in distribution of the ecological guilds were connected to several environmental factors such as nutrients, light and grazing; their application in assessment of trophic status of lakes is therefore precarious.  相似文献   

15.
The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources. Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa.  相似文献   

16.
Omnivory is common in many food webs. Omnivores in different habitats can potentially change their feeding behaviour and alter their trophic position and role according to habitat conditions. Here we examine the trophic level and diet of the omnivorous signal crayfish (Pacifastacus leniusculus) in gradients of trophic status and lake size, both of which have been previously suggested to affect trophic position of predators separately or combined as productive space. We found the trophic position of omnivorous crayfish to be positively correlated with lake trophic status, but found no evidence for any influence of lake size or productive space on crayfish trophic position. The higher trophic position of crayfish in eutrophic lakes was largely caused by a shift in crayfish diet and not by an increase in trophic links in basal parts of the food web. Hence, our results support the “productivity hypothesis,” suggesting that food chains can be longer in more productive systems. Furthermore, stable isotope data indicated that larger crayfish are more predatory than smaller crayfish in lakes with wider littoral zones. Wider littoral zones promoted the development of intrapopulation differences in trophic position whereas narrow littoral zones did not. Hence, differences in habitat quality between and within lakes seem to influence the trophic positions of omnivorous crayfish. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Prior to the 1980s, lakes Kyoga and Victoria previously supported an exceptionally diverse haplochromine fish fauna comprising at least 11 trophic groups. The species and trophic diversity in these lakes decreased when the introduced Nile perch depleted haplochromine stocks. From December 1996 to October 1998, we studied species and trophic diversity of haplochromine fishes in six satellite lakes without Nile perch in the Kyoga basin and compared them with the Kyoga main lake against historical data from Lake Victoria where Nile perch were introduced. Forty‐one species were found in the study area, of which, the Kyoga satellite lakes contributed 37 species in comparison to only 14 from the Kyoga main lake. Analysis of trophic diversity based on 24 species that contained food material revealed seven haplochromine trophic groups (insectivores, peadophages, piscivores, algal eaters, higher plant eaters, molluscivores and detritivores) in the Kyoga satellite lakes in comparison to two trophic groups (insectivores and molluscivores) in the Kyoga main lake. Many of the species and trophic groups of haplochromines depleted by the introduced Nile perch in lakes Kyoga and Victoria still survive in the Kyoga satellite lakes. This is attributed to the absence of Nile perch in those lakes. Nile perch has been prevented from spreading into the satellite lakes by swamp vegetation that separate them from the main lakes. If these swamps prevent Nile perch from spreading into the lakes, it is possible to conserve fish species, especially haplochromines, which are threatened by introduction of Nile perch in the main lakes.  相似文献   

18.
Duggan  I.C.  Green  J.D.  Shiel  R.J. 《Hydrobiologia》2001,(1):155-164
The distribution and ecology of planktonic rotifers was investigated in 33 lakes in the North Island, New Zealand, between 1997 and 1999. A total of 79 species of monogonont rotifer were identified, with an average of 21 species per lake, a diversity which is high in comparison with many previous New Zealand studies. Most species recorded were cosmopolitan taxa, and were widespread in their distribution over the North Island. Multivariate analyses (Multi-Dimensional Scaling and Canonical Correspondence Analysis) did not distinguish distinct lake groupings based on rotifer communities, but rather gradients in assemblages, which were most highly associated with lake trophic state. Based on these responses, the development of potential rotifer bioindicator schemes for lake trophic state is described and discussed.  相似文献   

19.
Eutrophication of Lake Neuchâtel indicated by the oligochaete communities   总被引:2,自引:2,他引:0  
Claude Lang 《Hydrobiologia》1989,174(1):57-65
Lake Neuchâtel (Switzerland), oligotrophic until 1950, was meso-eutrophic in 1980. The relative abundance in worm communities of Peloscolex velutinus and Stylodrilus heringianus was used to monitor the trophic state of the lake. In 1980, the median relative abundance of these oligotrophic species was 9% in the whole of Lake Neuchâtel compared with 70% in oligotrophic lakes, 35% in mesotrophic lakes, and 0% in eutrophic lakes. The scarcity of oligotrophic species in the deepest area (153 m) characterized better the meso-eutrophic state of Lake Neuchâtel than oxygen concentrations which never descended below 6 mg·1-1. Location of the area within the lake from where worms were sampled was of critical importance to assess the trophic state: some areas reflected the past rather than the present state of the lake.  相似文献   

20.
To explore whether trophic status is involved in identifying the denitrifier communities in shallow freshwater lakes, comparative studies regarding the variation of nirS-denitrifier communities were performed in water columns of six shallow freshwater lakes, ranging from mesotrophic to hypereutrophic status, in Jiangsu province of China. Restriction fragment length polymorphism (RFLP) analysis and cloning, followed by sequence analysis of selected samples were performed to examine the nirS-denitrifier communities. Results showed that a same predominant nirS unique operational taxonomic unit (OTU) appeared in mesotrophic, light eutrophic and middle eutrophic lakes, while a different nirS OTU appeared in the hypereutrophic lake. The nirS dendrogram could be divided into four clusters, and suggested a habitat-specific observation. The nirS libraries from lakes having mesotrophic and light eutrophic statuses grouped together, while those from lakes having middle eutrophic and hypereutrophic statuses diverged. The hypereutrophic lake had the lowest richness and evenness of nirS. Thus, the observed variation of nirS distribution and diversity was mainly affected by the trophic status, via some environmental factors such as pH, dissolved oxygen, nitrite, nitrate and chlorophyll-a concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号