首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

2.
Non-hematopoietic CD45+ precursor cells are not known to differentiate into cardiomyocytes. We found that CD45+/CD34-/lin- stromal cells isolated from mouse bone marrow (BMSCs) potentially differentiated into cardiomyocyte-like cells in vitro. Therefore, we hypothesized that the CD45+/CD34-/ lin- BMSCs might protect rat hearts against ischemia/reperfusion (IR) injury following xeno-transplantation. In the present study, BMSCs were isolated by immunoselection and their cellular phenotype and biochemical properties were characterized. The immunological inertness of BMSCs was examined by the allogeneic and xenogeneic mixed lymphocyte reaction (MLR). The potential role of BMSCs for cardioprotection was evaluated by intravenous introduction of 1 x 10(6) cells into rat IR hearts, induced by left coronary ligation for 45 min and released for 72 h. Changes in cardiac contractility and the degree of myocardial injury were assessed. Our findings indicated that BMSCs expressed the muscle-cell marker alpha-actinin after 5-azacytidine treatment. CD45+/CD34-/lin- stromal cells were characterized as mesenchymal progenitor cells based on the expression of Sca-1 and Rex-1. The MLR assay revealed an immunosuppression of BMSCs on mouse and rat lymphocytes. After xeno-transplantation, the BMSCs engrafted into the infarct area and attenuated IR injury. However, increases in intracardial TGF-beta and IFN-gamma contents of IR hearts were not affected by BMSC treatment. Interestingly, ex vivo evidence indicated that CXCR4, SDF-1 and TGFbeta-1 receptors were up-regulated after the cells were exposed to tissue extracts prepared from rat post-IR hearts. In addition, IFN-gamma treatment also markedly increased Sca-1 expression in BMSCs. Mechanistically, these results indicated that CXCR4/SDF-1 and TGF-beta signals potentially enhanced the interaction of BMSCs with the damaged myocardium, and increased IFN-gamma in post-ischemic hearts might cause BMSC to behave more like stem cells in cardioprotection. These data show that CD45+/CD34-/lin- BMSCs possess cardioprotective capacity. Evidently, the accurate production of soluble factors TGF-beta and IFN-gamma in parallel with increased expression of both TGF-beta and Sca-1 receptors may favor BMSCs to achieve a more efficient protective capacity.  相似文献   

3.
We have correlated the intensity of expression of CD45 Ag (T200 common leukocyte Ag) with mAb reactive with various lineages of hemopoietic cells in normal human bone marrow by using two-color immunofluorescence on a flow cytometer. Mature T lymphocytes (CD3+) and NK cells (CD16+ or CD11b+) expressed CD45 at the highest intensity. B lymphoid cells (CD19+) had three distinct levels of CD45 Ag expression. The bright CD45(3+) cells were mature B cells (CD19+, CD20+), whereas the less intense CD45(2+) cells were less mature B lymphoid cells (CD19+, CD10+). The dim CD45+ cells were very early, B lymphoid precursor cells (CD19+, CD10(2+), CD34+). The intensity of CD45 expression increased as cells matured in the monocytic lineage (CD14+, CD11b+). Among marrow granulocytic cells, CD45 intensity did not change on cells during maturation. Within the erythroid lineage, the most immature cells were CD45+ dim, and CD45 expression decreased during erythroid maturation to become undetectable on mature E. Hemopoietic progenitor cells (CD34+) expressed low levels of CD45 Ag. Expression of CD45R on marrow cells also showed intensity differences on different lineages. All NK cells (CD16+) were positive for CD45R, whereas only about one-half of the T lymphocytes (CD3+) were positive for CD45R. Almost all the cells in the erythroid and myelomonocytic lineages were CD45R-. Quantitative differences in expression of CD45R were observed on marrow B lymphoid cells which were correlated with the expression of CD45. The results show that quantitative changes in CD45 Ag expression accompany the differentiation and maturation of cells in the bone marrow. Comparisons with CD45R showed that this Ag was not always correlated with CD45. Since these Ag are the products of the same gene, these data indicate that the regulation of expression of the T200 molecules during normal hemopoietic development must be both quantitative and qualitative.  相似文献   

4.
Mesenchymal stem cells (MSCs) are of great interest for their potential use in cellular therapies. To define the population more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker for MSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers for MSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with a Pearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+, CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. The results were significant (p<0.05). The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrow appears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and accelerate the process of identifying MSCs for the field of cellular therapy.  相似文献   

5.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However, whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model, we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-), CD34+/CD45+, and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+, Sca1(-)/Gr1+, VEGFR1+, and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial, pericyte, or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors, colocalized with the tumor vascular network, and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast, human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis.  相似文献   

6.
Mouse hematopoiesis is initiated by long-term hematopoietic stem cells (HSC) that differentiate into a series of multipotent progenitors that exhibit progressively diminished self-renewal ability. In human hematopoiesis, populations enriched for HSC activity have been identified, as have downstream lineage-committed progenitors, but multipotent progenitor activity has not been uniquely isolated. Previous reports indicate that human HSC are enriched in Lin-CD34+CD38- cord blood and bone marrow and express CD90. We demonstrate that the Lin-CD34+CD38- fraction of cord blood and bone marrow can be subdivided into three subpopulations: CD90+CD45RA-, CD90-CD45RA-, and CD90-CD45RA+. Utilizing in vivo transplantation studies and complementary in vitro assays, we demonstrate that the Lin-CD34+CD38-CD90+CD45RA- cord blood fraction contains HSC and isolate this activity to as few as 10 purified cells. Furthermore, we report the first prospective isolation of a population of candidate human multipotent progenitors, Lin-CD34+CD38-CD90-CD45RA- cord blood.  相似文献   

7.
Hemopoietic stem and progenitor cells ordinarily residing within bone marrow are released into the circulation following G-CSF administration. Such mobilization has a great clinical impact on hemopoietic stem cell transplantation. Underlying mechanisms are incompletely understood, but may involve G-CSF-induced modulation of chemokines, adhesion molecules, and proteolytic enzymes. We studied G-CSF-induced mobilization of CD34+ CD10+ CD19- Lin- and CD34+ CD10+ CD19+ Lin- cells (early B and pro-B cells, respectively). These mobilized lymphoid populations could differentiate only into B/NK cells or B cells equivalent to their marrow counterparts. Mobilized lymphoid progenitors expressed lymphoid- but not myeloid-related genes including the G-CSF receptor gene, and displayed the same pattern of Ig rearrangement status as their bone marrow counterparts. Decreased expression of VLA-4 and CXCR-4 on mobilized lymphoid progenitors as well as multipotent and myeloid progenitors indicated lineage-independent involvement of these molecules in G-CSF-induced mobilization. The results suggest that by acting through multiple trans-acting signals, G-CSF can mobilize not only myeloid-committed populations but a variety of resident marrow cell populations including lymphoid progenitors.  相似文献   

8.
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.  相似文献   

9.
Autologous hematopoietic stem cell transplantation (HSCT) has recently been performed as a novel strategy to treat patients with new-onset type 1 diabetes (T1D). However, the mechanism of autologous HSCT-induced remission of diabetes remains unknown. In order to help clarify the mechanism of remission-induction following autologous HSCT in patients with T1D, mice treated with multiple low doses of streptozotocin to induce diabetes were used as both donors (n = 20) and recipients (n = 20). Compared to streptozocin-treated mice not receiving transplantation, syngeneic bone marrow transplantation (syn-BMT) from a streptozocin-treated diabetic donor, if applied during new-onset T1D (day 10 after diabetes onset), can reverse hyperglycemia without relapse (P < 0.001), maintain normal blood insulin levels (P < 0.001), and preserve islet cell mass. Compared to diabetic mice not undergoing HSCT, syn-BMT, results in restoration of Tregs in spleens (P < 0.01), increased Foxp3 mRNA expression (P < 0.01) and increased Foxp3 protein expression (P < 0.05). This diabetic-remission-inducing effect occurred in mice receiving bone marrow from either streptozocin-treated diabetic or non-diabetic normal donors. We conclude that autologous HSCT remission of diabetes is more than transient immune suppression, and is capable of prolonged remission-induction via regeneration of CD4+CD25+FoxP3+ Tregs.  相似文献   

10.
C Andreoni  D Rigal  M Bonnard  J Bernaud 《Blut》1990,61(5):271-277
Bone marrow aspirates from 48 healthy donors (34 adults, 14 children) were analyzed by flow cytometry (FACS Analyzer) after purification of low-density bone marrow cells (Ld BMC) on a density gradient (d = 1,077) and labelling with 23 anti-hematopoietic cell monoclonal antibodies. Based on physical properties, these Ld BMC could be divided into four different populations called E, My, Mo and L, which comprised 14% +/- 9%, 31% +/- 16%, 10% +/- 5% and 45% +/- 14% of these cells, respectively. The phenotypic analysis of these different populations enabled the identification in E, of erythrocytes (Glycophorin A+, Rhesus D+, but negative for early erythroid differentiation markers such as the transferrin receptor (Tf. R) and the FA6-152 antigen); in My of cells of the myeloid lineage (VIM2+, HLA DR-); in Mo of cells of the monocytic lineage (VIM2+, CD14+) plus some myeloblasts (VIM2+, CD14-, HLADR+) and finally in L of a heterogeneous population including: 1. T lymphocytes labelled to the same extent by CD2, CD3, CD5 and CD6 (28% +/- 10%), B lymphocytes assessed by CD19 and CD20 (12% +/- 8%), Pre-B cells (CD10+ = 8% +/- 7%), less than 5% of "natural killer" cells (CD16+ or Leu7+) and finally, less than 6% of myelomonocytes (CD14+ and/or VIM2+). 2. The erythroid lineage (rhesus D+ = 42% +/- 20%, Tf.R+ and FA6-152+ = 32% +/- 12%). 3. Undifferentiated cells or progenitor cells (CD34+ = 7% +/- 5%). 4. Cells unlabelled by any antibodies (approximately 6%). We observed no difference between bone marrow samples from adults or children, with respect to physical properties, and with all but four immunological markers. A significantly higher proportion of B cells (CD19+ and CD10+) (P less than 0.001) and undifferentiated cells (CD34+ and HLADR+) (P less than 0.02) was observed in children. These data, obtained from a large number of bone marrow samples, could be used to quantify the imbalance of some bone marrow disorders.  相似文献   

11.
Here we show that distinct subpopulations of cells exist within traumatic human extremity wounds, each having the ability to differentiate into multiple cells types in vitro. A crude cell suspension derived from traumatized muscle was positively sorted for CD29, CD31, CD34, CD56 or CD91. The cell suspension was also simultaneously negatively sorted for either CD45 or CD117 to exclude hematopoietic stem cells. These subpopulations varied in terms their total numbers and their abilities to grow, migrate, differentiate and secrete cytokines. While all five subpopulations demonstrated equal abilities to undergo osteogenesis, they were distinct in their ability to undergo adipogenesis and vascular endotheliogenesis. The most abundant subpopulations were CD29+ and CD34+, which overlapped significantly. The CD29+ and CD34+ cells had the greatest proliferative and migratory capacity while the CD56+ subpopulation produced the highest amounts of TGFß1 and TGFß2. When cultured under endothelial differentiation conditions the CD29+ and CD34+ cells expressed VE-cadherin, Tie2 and CD31, all markers of endothelial cells. These data indicate that while there are multiple cell types within traumatized muscle that have osteogenic differentiation capacity and may contribute to bone formation in post-traumatic heterotopic ossification (HO), the major contributory cell types are CD29+ and CD34+, which demonstrate endothelial progenitor cell characteristics.  相似文献   

12.
目的:探讨骨髓间充质干细胞(BMSCs)体外分离培养以及扩增的方法并鉴定。方法:取100g左右雄性SD大鼠后肢股骨、胫骨骨髓,原代全骨髓培养法,多次传代纯化,体外扩增后,观察细胞形态,并免疫组化及流式细胞仪检测cd34、cd90、cd105细胞因子,鉴定是否为BMSCs。结果:所获取的细胞呈长梭形,呈现特征性的漩涡状生长,CD34阴性,CD90、CD105阳性。结论:利用全骨髓培养法成功分离骨髓间充质干细胞,10代以内的细胞纯度高,活性好。全骨髓培养较为简便、易行。  相似文献   

13.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

14.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   

15.
This study aims to validate whether bone marrow stromal cells (BMSCs) transplantation could promote the resolution and recanalization of deep vein thrombosis (DVT) and to explore the underlying mechanism. The right hind femoral vein was embolized to establish the DVT rabbit model. BMSCs from New Zealand white rabbits were isolated and identified, and then injected into DVT rabbits. After that, the extent of angiogenesis was determined by the amount of capillaries that were positive for antibody against vWF. Macrophage infiltration was measured by immunohistochemistry with F4/80 antibody. M1 or M2 macrophages were identified as F4/80 + CD11c + or F4/80 + CD206 + cells by using flow cytometry analysis, respectively. BMSCs were successfully isolated and identified. BMSCs transplantation promotes macrophage infiltration and angiogenesis in DVT rabbits. BMSCs transplantation causes M1/M2 polarization, altered cytokine production and increased monocyte chemotactic protein 1 (MCP-1) protein expression in DVT rabbits. However, injection of MCP-1 protein not only reversed the effects of BMSCs transplantation on macrophage infiltration and angiogenesis, but also reversed the effects of BMSCs transplantation on M1/M2 polarization and cytokine production in DVT rabbits. BMSCs transplantation promotes the resolution and recanalization of DVT in rabbits through regulating macrophage infiltration and angiogenesis, the underlying mechanism is associated with MCP-1 expression.  相似文献   

16.
The content of stem cells was analysed in bone marrow samples from 75 multiple myeloma patients. In unstimulated bone marrow the percentage of CD34+cells was significantly reduced in 11 patients previously treated with melphalan-prednisolone (MP)(median= 0.15%) compared to median 0.87% in 31 untreated patients (P=0.0001). The bone marrow cellularity in the two groups did not differ. There was no correlation between the number of courses or total dose of melphalan and content of CD34+cells in the bone marrow. The clonogenicity as, well as the ability to expand the marrow stem cell pool during growth factor treatment were also reduced in MP treated patients compared to untreated patients. Analysis of different subsets of CD34+ cells revealed no influence on the pre B cell compartment in the bone marrow by MP treatment, but the committed stem cells (CD34+CD38+) were reduced more than the uncommitted stem cells (CD34+CD38—) in the MP treated group compared to the untreated patients. Mobilisation to and harvest of total number of CD34+ cells from peripheral blood was also reduced in the MP treated group. There was, however, no difference in the distribution between CD34+CD38+and CD34+CD38—populations in the leukapheresis products in the untreated and the melphalan-treated group, suggesting selective mobilisation of CD34+CD38+ cells and/or differentiation of CD34+ CD38-cells during growth factor stimulation. We conclude that melphalan decreased the number of stem cells in the bone marrow, the ability to expand the stem cell pool and mobilise stem cells to the pheripheral blood.  相似文献   

17.
Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25 ng/ml BMP2), BMP100 (induced with 100 ng/ml BMP2) and BMP25  + XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%–157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus.  相似文献   

18.
肝硬化是一种临床常见的肝病良性终末期表现。目前临床上尚缺乏有效的治疗措施。肝脏移植是最理想的治疗方法,但受供体肝脏来源限制,且费用昂贵。近年来开展的自体骨髓干细胞(BMSCs)移植治疗,为肝硬化的治疗带来了新的希望。BMSCs主要包括造型血干细胞和间充质干细胞,其具有可塑性,体外通过生长因子,体内利用特定微环境均可诱导BMSCs分化为肝前体细胞和成熟肝细胞,并明显改善肝功能。从动物实验到临床研究亦表明,BMSCs具有来源丰富、费用低廉、损伤小、自体移植不栓塞、无排斥反应等优点,为治疗肝病带来了新思路,有望成为生物人工肝的细胞来源。本文就BMSCs移植治疗肝硬化的研究现状,尤其是移植途径以及在肝脏内定居、迁移和分化机制的示踪观察方法和存在的问题作一综述,以期为从事肝病研究的同仁提供参考依据。通过对BMSCs移植从基础研究及临床应用的最新进展的描述,展示BMSCs在肝硬化治疗方面良好的治疗前景。  相似文献   

19.
AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.  相似文献   

20.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号