首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on fractal and pipe model assumptions, a static three-dimensional model of the Gliricidia sepium root system was developed, in order to provide a basis for the prediction of root branching, size and mass in an alley cropping system. The model was built from observations about the topology, branching rules, link length and diameter, and root orientation, provided by in situ and extracted root systems. Evaluation tests were carried out at the plant level and at the field level. These tests principally concerned coefficients α and q –- the proportionality factor α between total cross-sectional area of a root before and after branching, and allocation parameter q that defines the partitioning of biomass between the new links after a branching event –- that could be considered as key variables of this fractal approach. Although independent of root diameter, these coefficients showed a certain variability that may affect the precision of the predictions. When calibrated, however, the model provided suitable predictions of root dry matter, total root length and root diameter at the plant level. At the field level, the simulation of 2D root maps was accurate for root distribution patterns, but the number of simulated root dots was underestimated in the surface layers. Hence recommendations were made to improve the model with regard to α and q. This static approach appeared to be well suited to study the root system of adult trees. Compared with explicit models, the main advantage of the fractal approach is its plasticity and ease of use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The response of sole and intercropped cereal to nitrogen fertilization was compared in three contrasting cropping systems, sorghum/pigeonpea, maize/groundnut, and sorghum/cowpea. The cereal in these systems responded to nitrogen similarly as in sole cropping, although different legumes affected the cereal differently. There was no current season benefit from the legume, whether it matured earlier or later than the cereal, and for high yields the cereal in intercropping needs fertilizer application. Response to nitrogen varied with the amount and distribution of seasonal rainfall. With increased nitrogen fertilizer applied to the intercropped cereal, the legume yields were suppressed. The optimum dose for the intercropped cereal was similar to that for sole cropping but it was 50% less in a dry year particularly, on a shallow Alfisol. The combined yields of both crops made intercropping more profitable than sole cropping. The relative advantage of intercropping was high in the sorghum/pigeonpea system (40 to 70%) because of the greater temporal difference between species, and moderate in the maize/groundnut (13 to 35%), and sorghum/cowpea (18 to 25%) systems. Although the relative advantage of intercropping (expressed as Land Equivalent Ratio (LER)) decreased with N, the economic value, of the advantage was little affected within the optimum N range because absolute yields increased with fertilization.  相似文献   

4.
Summary Seeds of Gliricidia sepium (Jacq.) Walp., a tree native to seasonal tropical forests of Central America, were inoculated with N-fixing Rhizobium bacteria and grown in growth chambers for 71 days to investigate interactive effects of atmospheric CO2 and plant N status on early seedling growth, nodulation, and N accretion. Seedlings were grown with CO2 partial pressures of 350 and 650 bar (current ambient and a predicted partial pressure of the mid-21st century) and with plus N or minus N nutrient solutions to control soil N status. Of particular interest was seedling response to CO2 when grown without available soil N, a condition in which seedlings initially experienced severe N deficiency because bacterial N-fixation was the sole source of N. Biomass of leaves, stems, and roots increased significantly with CO2 enrichment (by 32%, 15% and 26%, respectively) provided seedlings were supplied with N fertilizer. Leaf biomass of N-deficient seedlings was increased 50% by CO2 enrichment but there was little indication that photosynthate translocation from leaves to roots or that plant N (fixed by Rhizobium) was altered by elevated CO2. In seedlings supplied with soil N, elevated CO2 increased average nodule weight, total nodule weight per plant, and the amount of leaf nitrogen provided by N-fixation (as indicated by leaf 15N). While CO2 enrichment reduced the N concentration of some plant tissues, whole plant N accretion increased. Results support the contention that increasing atmospheric CO2 partial pressures will enhance productivity and N-fixing activity of N-fixing tree seedlings, but that the magnitude of early seedling response to CO2 will depend greatly on plant and soil nutrient status.  相似文献   

5.
Awonaike  K. O.  Danso  S. K. A.  Zapata  F. 《Plant and Soil》1993,155(1):325-328
In this study, an approach involving a double isotope (15N and 34S) labelling technique was used to examine which of five reference crops (Eucalyptus camaldulensis, Cassia siamea, Cassia spectabilis, Lolium perenne and Eucalyptus grandis) would be suitable for measuring N fixed by Gliricidia sepium and Leucaena leucocephala. The rationale is that the ratio of fertilizer-derived S to soil-derived S in a suitable reference crop is similar to that measured in the nitrogen fixing tree (NFT) since the N ratios in the two crop types cannot be measured directly. E. camaldulensis and E. grandis were found to be suitable reference crops because they absorbed fertilizer and soil S in the same ratio as G. sepium and L. leucocephala.  相似文献   

6.
Actinote anteas from Costa Rica was screened as a biological control candidate forChromolaena odorata in South Africa. Preliminary starvation trials suggest thatA. anteas is species specific. There are seven larval instars and the life cycle is completed in 101–169 days. The culture died out after three generations possibly because of incompatibility with the form of the local species ofC. odorata or disease.  相似文献   

7.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

8.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

9.
A study was conducted to characterize changes in bermudagrass (Cynodon dactylon [L.] Pers.) and tall fescue (Festuca arundinacea Schreb.) root development over time and with depth, and to determine the effects of defoliation interval and chemical seedhead suppression on root and shoot growth. Field plots were established on a fine-silty, mixed mesic Typic Fragiudult soil in Fayetteville, AR, USA, and each plot contained three minirhizotrons (plexiglass observation tubes) to a depth of 40 cm. Images of roots in 10-cm depth increments were periodically videorecorded, and total root length (RL) and root length density (RLD) were measured with a computer-interfaced tracing probe. Treatments consisted of two cutting intervals, 3 and 6 weeks, and two plant growth regulator (PGR) treatments, an untreated control and either 300 g ha-1 mefluidide on tall fescue in early spring of both years or 10 g ha-1 each of metsulfuron methyl (MSM) and sulfometuron methyl (SMM) applied in late May of both post-establishment years. Data were analyzed separately for the establishment period (planting to the first date of PGR application) and the subsequent post-establishment period. Bermulagrass exhibited a two-stage root establishment pattern characterized first by minimal root development in conjunction with stolon proliferation and soil surface colonization, followed by accumulation of total RL over two subsequent forage production seasons. There was a net accumulation of root mass during the winter dormancy period of 1986–87. Total RL of tall fescue peaked one and a half years after planting. Cutting interval had no influence on RL and RLD. Application of a PGR did not affect RL but did alter RLD of both species. Application of mefluidide to tall fescue stimulated RLD 64 days after application, whereas bermudagrass RLD was retarded by MSM and SMM up to 50 days after application. Trends in root growth did not closely follow patterns of shoot growth. Published with the approval of the Director of the Arkansas Agricultural Experiment Station. Published with the approval of the Director of the Arkansas Agricultural Experiment Station.  相似文献   

10.
Populations of viable sclerotia ofSclerotium rolfsii were highest in soil in a field in which tomato was planted for three successive years before sampling and in one in which tomato followed groundnut in the 2 years prior to this study. The lowest sclerotial numbers were recorded in fields in which groundnut followed maize or in which maize or sorghum was the last crop before sampling.  相似文献   

11.
A Dehesa is a structurally complex agro-silvo-pastoral system where at least two strata of vegetation, trees and herbaceous plants coexist. We studied the root distribution of trees (Quercus ilex L.) and herbaceous plants, in order to evaluate tree and crops competition and complementarity in Dehesas of Central Western Spain. 72 soil cores of 10 cm diameter (one to two metre deep) were taken out around 13 trees. Seven trees were intercropped with Avena sativa L. and six trees were in a grazed pasture dominated by native grasses. Soil coring was performed at four distances from the tree trunks, from 2.5 (beneath canopy) till 20 m (out of the canopy). Root length density (RLD) of herbaceous plants and trees was measured using the soil core-break method. Additionally, we mapped tree roots in 51 profiles of 7 recently opened road cuts, located between 4 and 26 m of distance from the nearest tree. The depth of the road cuts varied between 2.5 and 5.5 m. Herbaceous plant roots were located mostly in the upper 30 cm, above a clayey, dense soil layer. RLD of herbaceous plants decreased exponentially with depth until 100 cm depth. Holm-oak showed a much lower RLD than herbs (on average, 2.4 versus 23.7 km m−3, respectively, in the first 10 cm of the soil depth). Tree RLD was surprisingly almost uniform with depth and distance to trees. We estimated a 5.2 m maximum depth and a 33 m maximum horizontal extension for tree roots. The huge surface of soil explored by tree roots (even 7 times the projection of the canopy) could allow trees to meet their water needs during the dry Mediterranean summers. The limited vertical overlap of the two root profiles suggests that competition for soil resources between trees and the herbaceous understorey in the Dehesa is probably not as strong as usually assumed.  相似文献   

12.
The objective of this investigation was to determine how free-air carbon dioxide enrichment (FACE) of cotton (Gossypium hirsulam L.) affects root distribution in a natural soil environment. For two years cotton was grown on a Trix clay loam under two atmospheric CO2 concentrations (370 and 550 μmol mol−1) and two water treatments [wet, 100% of evapotranspiration (ET) replaced and dry, 75% (1990) and 67% (1991) of ET replaced] at Maricopa, AZ. At early vegetative and mid-reproductive growth, 90 cm soil cores were taken at 0,0.25, and 0.5 m perpendicular to row center; root variables were ascertained at three 30 cm depth increments. The effect of water stress alone or its interaction with CO2 on measured variables during both samplings were rare and showed no consistent pattern. There was a significant CO2 × position interaction for root length density at the vegetative stage (both years) and reproductive stage (1990 only); the positive effects of extra CO2 were more evident at interrow positions (0.25 and 0.5 m). A CO2 × depth × position interaction at the vegetative phase (1990) indicated that FACE increased root dry weight densities for the top soil depth increment at all positions and at the middle increment at the 0.5 m position. Similar trends were seen at the reproductive sampling for this measure as well as for root length density at both sample dates in 1990. In 1991, a CO2 × depth interaction was noted at both periods; CO2 enhancement of root densities (i.e., both length and dry weight) were observed within the upper and middle depths. Although variable in response, increases for root lineal density under high CO2 were also seen. In general, results also revealed that the ambient CO2 treatment had a higher proportion of its root system growing closer to the row center, both on a root length and dry wight basis. On the other hand, the FACE treatment had proportionately more of its roots allocated away from row center (root length basis only). Results from this field experiment clearly suggest that increased atmospheric CO2 concentration will alter root distribution patterns in cotton.  相似文献   

13.
Browsing ruminants have access to different biomass, depending on how high they can reach. Foliage consisting of leaves and green pods from Acacia senegal, Pterocarpus lucens and Guiera senegalensis, was collected according to height above ground accessible to either sheep (0.90 m), goats (1.65 m) or cattle (1.50 m). There was a significant variation in the chemical composition of the biomass between species. The crude protein (CP) content was 114, 157 and 217 g/kg dry matter (DM) and the neutral detergent fiber (aNDF) content 604, 534 and 412 g/kg DM for G. senegalensis, P. lucens and A. senegal, respectively. There was no significant variation in chemical composition according to the height accessible by cattle, sheep or goats. The voluntary intake was studied using eight goats per diet. The six diets consisted of the three browse leaves and two pods (A. senegal and P. lucens) and a control. The leaves were fed combined with hay of Schoenefeldia gracilis (maximum 30%) and the control was pure hay. Apparent digestibilities of the same diets, with the exception of G. senegalensis, were measured using five goats per diet. All browse fodders used in the feeding and digestibility trials were high in CP (105–170 g/kg DM) and lignin (164–234 g/kg DM except A. senegal leaves) and low in fiber (322–590 g/kg DM of NDF) compared to the hay (31 g/kg DM of CP and 755 g/kg DM of NDF). The highest intake was of the P. lucens diet (864 g) and the lowest of the G. senegalensis diet (397 g). The intake of pods from A. senegal was higher (1033 g) than from P. lucens pods (691 g). The apparent digestibility of OM and CP in the browse leaves was 0.63 and 0.57 and 0.63 and 0.64 for A. senegal and P. lucens, respectively, higher than for the hay, which showed higher digestibility of NDF. A. senegal pods had higher digestibility for all nutrients than P. lucens pods. Based on the high CP content and the intake and digestibility characteristics, P. lucens leaves and A. senegal leaves and pods can be recommended as protein supplements to low quality diets.  相似文献   

14.
Melaleuca halmaturorum is a salt and waterlogging tolerant tree and thus often occurs in saline areas fringing permanent wetlands and in ephemeral swamps. The dominance of this tree in natural groundwater discharge areas may result in M. halmaturorum transpiration making a major contribution to groundwater discharge. To quantify this the seasonal changes in tree water sources in response to fluctuating soil salinity and waterlogging were examined. This study was conducted in a natural system where seasonally fluctuating saline groundwater (64 dS m–1; 0.3–1.2 m deep) allowed the patterns of M. halmaturorum root water uptake to be followed over a 15 month period. Tree water sources were examined using the naturally occurring stable isotopes of water, while new root growth was examined using a field root observation window and from soil cores. The presence of isotopic fractionation of 2H under conditions of soil salinity and waterlogging was tested in a glasshouse experiment. Measurements of soil and leaf water potential were also made to examine the possible water sources and limits to water uptake. No isotopic fractionation was found by tree roots under conditions of salinity and waterlogging. M. halmaturorum trees were active in taking up groundwater at most times and combined this with a shallower soil water source replenished by rainfall in winter. Water uptake was concentrated in the deeper parts of the soil profile when the groundwater was at its deepest and salt had accumulated in the surface soils, at the end of summer. When groundwater rose, at the end of winter, roots responded by extracting water from near the soil surface (0–0.1 m), at the new watertable. This pattern of water uptake in response to groundwater fluctuations and salt accumulation in the surface soil was also reflected in new root tip appearance at the root observation window. Fluctuations in leaf water potential fallowed fluctuations in surface soil (0.1 m depth) water potential at all times. In winter leaf water potential reflected the absolute values of the surface soil water potential but in summer it was between surface soil and groundwater water potentials. We conclude that M. halmaturorum used groundwater in summer and a combination of rainfall and groundwater from the surface soils in winter. The ability to take up water from saline substrates through the maintenance of low leaf water potential, combined with this ability to rapidly alter root water uptake in response to changes in soil water availability contributed to the survival of M. halmaturorum in this saline swamp.  相似文献   

15.
Root turnover in a beech and a spruce stand of the Belgian Ardennes   总被引:8,自引:0,他引:8  
The theoretical basis of fine root turnover estimation in forest soils is discussed, in relation to appropriate experimental techniques of measurement. After sequential coring, the correct expression is the sum of significant positive increments of live and dead roots of the various diameter categories, to which the transfer of dead roots to organic matter derived from roots, OMDR, has to be added. This should not be confounded with dead root mineralization. The transfer rates should first be estimated in root dimensions and not in weight of dry matter. The measurements were carried out in a 120 year old beech (Fagus sylvatica L.) stand and a 35 year old Norway spruce (Picea abies Karst) stand, in the Eastern Ardennes, Belgium. The turnover rate of fine roots (diam. <5 mm) was 4393 kg ha−1 year−1 (root dry weight), including 711.2 kg ha−1 year−1 for dead root transfer to OMDR, for beech. For spruce, turnover rate was 7011 kg ha−1 year−1 (root dry weight), including 1498 kg ha−1 year−1 for dead root transfer to OMDR. Under beech, there was a slight root density increase in spring. No seasonal fluctuations were observed under spruce, but a strong irreversible drop in live root growth was found in the later season 1980–1981, corresponding to a decrease of tree height growth and trunk radius increment. Turnover rates were further expressed in dry weight and in amounts of elements (kg ha−1 year−1) (Ca, Mg, K, Na, Al, N, P, S). Correlative relations between root dimensions and dry weight and element concentrations show that the derived values, and in particular root specific density (dry weight volume−1) vary according to species, root category, and seasonal sampling. Various schemes of seasonal variations of root growth, described in Europe, show that the major dependance on general climate is obscured by environmental factors (soil, exposure, species). It is suggested that root density fluctuation approach the steady state on an annual basis under mild Atlantic conditions.  相似文献   

16.
The influence of various tillage methods on two wetland rice soils in the Philippines is reported. The soils differed principally in clay content, 38% for the clay loam (clayey, mixed isohyperthermic Entic Hapludoll) while 56% for the clay (clayey, mixed noncalcareous, isohyperthermic Andaqueptic Haplaquoll). This had a marked effect on their response to tillage and varying water regime. The clay soil, under field conditions, showed little change in pore size distribution or soil water behaviour with different tillage methods. Crop (Rice, Oryza sativa L., var. IR20) yields were unaffected by tillage.In contrast, tillage effects were very marked in the clay loam soil, which consisted of a greenhouse and a field trial. In the greenhouse, which experienced severe dry periods, wet tillage not only increased the moisture retentivity but also the soil impedance at soil matric potential ()<–0.01 MPa. Seasonal average was <–1 MPa. Root length density decreased by 39% with dry tillage and by 56% with wet tillage compared with zero tillage. Grain yield however, did not vary with soil treatment. In the field, which experienced moderate dry spells, varied between –0.13 and –0.48 MPa. Root length density was significantly reduced at soil impedance >0.75 MPa. Wet tillage increased soil moisture storage which minimized the soil impedance during the dry cycle more effectively than did dry tillage. The crop performed best under wet tillage and least under zero tillage. Wet tillage in this soil was more effective under moderate than under severe water stress conditions.  相似文献   

17.
Melaleuca quinquenervia (Cav.) S.T. Blake is an aggressive, invasive species in sub-tropical Florida that is considered a serious threat to the existing biological integrity of many subtropical ecosystems in south Florida. It prevents other species from thriving through its high rate of seed production/germination and the formation of a dense tree canopy. However, its ability to take over a site between initial seedling establishment and crown closure is not well understood. The objective of this study was to determine (i) the nature of root development with time and soil depth, and (ii) the ability of M. quinquenervia to invade and absorb nutrients from soil already occupied by native vegetation. The working hypotheses were that M. quinquenervia captures a site either by (i) tolerating competition by prolifically growing roots into soil already occupied by native plants, or (ii) avoiding competition by rooting to depths where inter-root competition is less and water supply during a drought is available. Soil trenches and in-growth trays were used to measure root distribution and growth. Root number (# m–2), root length density (m root m–3 soil volume), and root biomass (g root m–3 soil) were determined. This study demonstrated that M. quinquenervia (1) is a prolific rooter with or without the presence of competing vegetation; (2) can develop root densities higher than many mature native species at an early age; (3) can develop roots in the soil surface during soil drying periods, even while competitive grasses are dying out; (4) can develop a deep root system at an early age; and (5) is an effective rooter in both moist and dry water regimes in this fluctuating water table soil. The data suggested that this species is a strong competitor through the use of both competition avoidance and tolerance mechanisms and that the rooting habit of M. quinquenervia should be an important consideration when evaluating its ability as an invasive species.  相似文献   

18.
R. H. Teyker 《Plant and Soil》1992,144(2):289-295
Growth of maize seedlings can be improved by enhanced ammonium nutrition, but placing fertilizer anhydrous ammonia close to seedlings introduces the risk of ammonia toxicity. In this study, growth and root elongation response to rates of closely placed NH4OH bands were investigated in two contrasting maize hybrids. Seven rates of NH4OH, ranging from 0 to 200 mg N kg-1 soil were injected into the center of each pot. A single rate of Ca(NO3)2-N was included to compare hybrids for N form preference at a moderate N rate. Three seedlings per pot were planted 5.7 cm from the injection point.Hybrid B73×LH51 produced a quadratic response in shoot growth to NH4OH rates, whereas LH74×LH123 exhibited a significant linear decline in response to NH4OH rate. Root length density sampled from the fertlized zone declined linearly in response to NH4OH rate while a slight increase in root length density in unfertilized zones was observed at intermediate NH4OH rates. Hybrids did not differ in root length density in either zone.The hybrid with greater tolerance of NH4OH rates (B73×LH51) also showed a preference in shoot growth for NH4-over NO3-N at 66.7 mg N kg-1 compared to LH74×LH123. On average across hybrids, nitrate concentrations of xylem exudate collected from detopped plants were 14.5 mmol g-1 for Ca(NO3)2 treatments and 1.5 mmol g-1 for NH4OH treatments, indicating that contrasting N-form nutrition resulted from fertilizer treatments. Malate concentrations were higher in the NH4OH treatment indicating that this organic acid anion may substitute for the negative charge of nitrate during enhanced ammonium nutrition in maize.The results suggest that potentially useful genetic variation exists in maize for N form preference and for tolerance to increasing ammonical-N rates.  相似文献   

19.
The effect of inorganic nitrogen (N) fertilizer on the ionic composition of the soil solution under maize (Zea mays L.) was studied. A pot experiment was carried out with two treatments combined factorially, with or without N application (Ca(NO3)2; +N and –N treatments, respectively), and with or without plants. Three looped hollow fiber samplers were installed in each pot to sample soil solutions nondestructively from the root zone, seven times during the 50-day growth period. Plants were harvested on the 50th day, and their nutrient contents determined.Effects of N fertilizer on the soil solutions were observed by the first sampling, 2 days after sowing. The concentrations of Ca and NO3 and electrical conductivity (EC) increased significantly in the +N treatments as direct effects of fertilizer application. In addition, the concentrations of Mg, K, Na and H+ also increased and that of P decreased significantly as indirect effects caused by the re-establishment of chemical equilibria. This suggested the greater supply as well as the greater possibility of leaching loss not only of NO3 but also of Ca, Mg and K. In the treatments with plants, the concentrations of NO3 , Ca, Mg and K decreased with time and pH increased significantly compared with the unplanted soil. The depletion of N in the soil solution roughly agreed with the amount of N taken up by the plant. The depletions of K from the soil solution amounted to less than 10% of the amount of the K taken up, suggesting intensive replenishment of K from exchange sites in the soil. Depletions of Ca and Mg were several times higher than the amounts taken up, indicating that the depletions resulted from the adsorption of the divalent cations by the soil rather than uptake by plants. Because NO3 is hardly absorbed by exchange sites in soil and was the dominant anion in solution, it was concluded that NO3 had a major role in controlling cation concentrations in the soil solution and, consequently, on their availability for uptake by plants as well as their possible leaching loss. ei]H Marschner  相似文献   

20.
Spatial and temporal dynamics of biomass allocation within and between organs were investigated in seedlings of two birch species of contrasting successional status. Seedlings of Betula alleghaniensis Britt (yellow birch) and B. populifolia Marsh (gray birch) were grown for 6 weeks at two nutrient levels in rectangular plexiglass containers to allow non-destructive estimates of root growth, production and loss. Leaf area and production were simultaneously monitored. Yellow birch responded more to nutrient level than gray birch in terms of total biomass, shoot biomass, leaf area and root length. Yellow birch also flexibly altered within-organ allocation (specific leaf area, specific root length and specific soil amount). In contrast, gray birch altered between-organ allocation patterns (root length:leaf area and soil amount:leaf area ratios) more than yellow birch in response to nutrient level. Yellow birch showed greater overall root density changes within a very compact root system, while gray birch showed localized root density changes as concentric bands of new root production spread through the soil. Species differ critically in their responses of standing root length and root production and loss rates to nutrient supply. Early successional species such as gray birch are hypothesized to exhibit higher plasticity in varied environments than later successional species such as yellow birch. Our results suggest that different patterns of allocation, within and between plant organs, do not necessarily follow the same trajectories. To characterize thoroughly the nature of functional flexibility through ontogeny, within- and between-organ patterns of allocation must be accounted for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号