首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estradiol esters at C-17 and C-3 with palmitic, stearic and oleic acids were chemically synthesized and then evaluated for their long-acting estrogenic responses in ovariectomized rats. The duration of the biological effects was measured after a single subcutaneous dose of 0.1 mumol of each ester and compared with those observed with 17 beta-estradiol, estradiol 3-benzoate and estradiol 17-enanthate. Vaginal citology, uterophyc action, serum gonadotropins inhibition and 17 beta-estradiol levels were measured 0, 5, 10, 20, 30 and 60 days after injection. The results disclosed that most of the estradiol derivatives evaluated exhibited a long-acting estrogenic action. However, the monoesters at C-17 showed longer effects that monoesters at C-3, while the estradiol diesters exhibited the shortest effects. In addition as shown by its low serum levels, all estradiol esters with unsaturated fatty acids show a decreased E2 absorption. The overall results indicated that esterification of E2 with long chain fatty acids provided long-acting properties to it, being higher with C-17 esters. Whether some of these compounds could be employed in substitutive endocrine therapy remains to be established.  相似文献   

2.
3.
The rapid non-genomic stimulatory action of progesterone (Pg) and estradiol (E2) on nitric oxide synthase (NOS) activity of endothelium intact aortic rings and its effect on platelet aggregation was investigated. First we measured the effect of the hormones on platelet aggregation when added to rat aortic strips (RAS) incubated in a PRP. RAS induced an antiaggregatory activity, which was enhanced by the presence of the hormones. The inhibitory action induced by the hormones was evoked in a dose dependent manner (10 pM-100 nM). These effects are specific for progesterone and 17-beta-estradiol, since either testosterone and 17-alpha-estradiol were devoid of activity. The hormones induced rapid responses, producing significant inhibition within 1 to 5 minutes of hormonal exposure. The addition of 10(-5) M L-NAME suppressed the antiaggregatory effect of 1 nM E2 or 10 nM Pg. Furthermore, we specifically quantified the NO generation by the 3H-citrulline technique. 10(-8) M E2 induced 2-fold increase of RAS citrulline production, while the increment induced by 10(-7) M Pg was 55% over control. Preincubation with 10(-5) M L-NAME completely suppressed the stimulatory action of 10(-9) M E2 or 10(-8) M Pg, confirming that the antiaggregatory factor released from the aortic tissue was NO. Preincubation with cycloheximide did not block the increment in NO induced by the hormones. In conclusion the present study provides for the first time evidence of acute, non-genomic effects of Pg on rat aorta NOS activity and platelet aggregation in coincidence with the results obtained with estradiol treatment.  相似文献   

4.
Previous dose range-finding studies with nonylphenol (NP) administered to rats in a soy- and alfalfa-free diet showed apparent feminization of several endpoints in male rats at doses of 25 ppm and above. One possible mechanism contributing to these effects is a reduction of testosterone at critical developmental periods. The present study was conducted as an adjunct to a multigeneration study and was designed to examine the effect of NP on testosterone production. Male rats in the F1 and F2 generations were exposed through their dams or directly to various dietary doses of NP (0, 25, 200 and 750 ppm) throughout gestation and until sacrifice at either postnatal day 2 (PND2), PND50, or PND140. Male pups in the F3 generation were examined only on PND2. At PND2, serum testosterone levels were significantly decreased in all groups exposed to NP in the F1 generation, but not in the F2 or F3 generations. The activity of 17alpha-hydroxylase/C17, 20 lyase (P450c17) in PND2 testicular homogenates was not affected by NP treatment. In F1 and F2 PND50 and PND140 rats, NP treatment did not affect serum testosterone levels. The absolute dorsolateral prostate weight was increased in the 200 and 750 ppm dose groups only in the F1 PND50 rats, however, no significant effects were observed in other male reproductive organs. NP treatment did not affect P450c17 activity in microsomes prepared from testes of F1 PND50 or PND140 rats. However, P450c17 activity was significantly decreased in testicular microsomes of F(2) PND50 (200 and 750 ppm dose groups) and PND140 (25, 200, and 750 ppm dose groups) rats. A decrease in testicular beta-nicotinamide adenine dinucleotide phosphate (NADPH) P450 reductase was also observed in all PND50 and PND140 NP-exposed rats of the F1 and F2 generations. The ability of NP to directly inhibit P450c17 activity in vitro at concentrations of 1-100 microM was also demonstrated. These results indicate that NP can inhibit the activity of enzymes involved in testosterone synthesis, but suggest minimal effects on testosterone or testosterone-dependent endpoints via this mechanism.  相似文献   

5.
Neuropeptides influence cancer cell replication and growth. Opioid peptides, and opiergic neurons are found in the prostate gland, and they are proposed to exert a role in tumor regulation, influencing cancer cell growth, as opioid agonists inhibit cell growth in several systems, including the human prostate cancer cell line LNCaP. In the same cell line, the existence of membrane testosterone receptors was recently reported, which increase, in a non-genomic manner, the secretion of PSA, and modify actin cytoskeleton dynamics, through the signaling cascade FAK-->PI-3 kinase-->Cdc42/Rac1. In the present work, we present data supporting that the general opioid agonist Ethylketocyclazocine (EKC) decreases testosterone-BSA (a non-internalizable testosterone analog) induced PSA secretion. Furthermore, we report that this opioid affects this non-genomic testosterone action, by modifying the distribution of the actin cytoskeleton in the cells, disrupting the above signaling cascade. In addition, after long (>24 h) incubation, opioids decrease the number of membrane testosterone receptors, and reverse their effect on the signaling molecules. In conclusion, our results provide some new insights of a possible action of opioids in prostate cancer control by interfering with the action and the expression of membrane testosterone receptors and signaling.  相似文献   

6.
Epidemiologic studies have previously suggested that premenopausal females have reduced incidence of cardiovascular disease (CVD) when compared to age-matched males, and the incidence and severity of CVD increases postmenopause. The lower incidence of cardiovascular disease in women during reproductive age is attributed at least in part to estrogen (E2). E2 binds to the traditional E2 receptors (ERs), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ), as well as the more recently identified G-protein-coupled ER (GPR30), and can exert both genomic and non-genomic actions. This review summarizes the protective role of E2 and its receptors in the cardiovascular system and discusses its underlying mechanisms with an emphasis on oxidative stress, fibrosis, angiogenesis, and vascular function. This review also presents the sexual dimorphic role of ERs in modulating E2 action in cardiovascular disease. The controversies surrounding the clinical use of exogenous E2 as a therapeutic agent for cardiovascular disease in women due to the possible risks of thrombotic events, cancers, and arrhythmia are also discussed. Endogenous local E2 biosynthesis from the conversion of testosterone to E2 via aromatase enzyme offers a novel therapeutic paradigm. Targeting specific ERs in the cardiovascular system may result in novel and possibly safer therapeutic options for cardiovascular protection.  相似文献   

7.
Despite being generally perceived as detrimental to the cardiovascular system, testosterone has marked beneficial vascular effects; most notably it acutely and directly causes vasodilatation. Indeed, men with hypotestosteronaemia can present with myocardial ischemia and angina which can be rapidly alleviated by infusion of testosterone. To date, however, in vitro studies have failed to provide a convincing mechanism to account for this clinically important effect. Here, using whole-cell patch-clamp recordings to measure current flow through recombinant human L-type Ca2+ channel alpha(1C) subunits (Ca(v)1.2), we demonstrate that testosterone inhibits such currents in a concentration-dependent manner. Importantly, this occurs over the physiological range of testosterone concentrations (IC50 34 nM), and is not mimicked by the metabolite 5alpha-androstan-17beta-ol-3-one (DHT), nor by progesterone or estradiol, even at high (10 microM) concentration. L-type Ca2+ channels in the vasculature are also important clinical targets for vasodilatory dihydropyridines. A single point mutation (T1007Y) almost completely abolishes nifedipine sensitivity in our recombinant expression system. Crucially, the same mutation renders the channels insensitive to testosterone. Our data strongly suggest, for the first time, the molecular requirements for testosterone binding to L-type Ca2+ channels, thereby supporting its beneficial role as an endogenous Ca2+ channel antagonist in the treatment of cardiovascular disease.  相似文献   

8.
Aspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17β-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11β-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3β-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus. It was therefore of interest to determine the fate of a series of 3α-substituted steroidal analogues to determine stereochemical effect on transformation. Hydroxylation on the central rings was found to be restricted to the 11β-position (normal binding), indicating that the 3α-stereochemistry removes freedom of binding orientation within the hydroxylase. The only other hydroxylation observed was at the 1β-position. Interestingly the presence of this functional group did not prevent lactonization of the C-17 ketone. In contrast the presence of the 11β-hydroxyl completely inhibited Baeyer–Villiger oxidation, a result which again demonstrates that single functional groups can exert significant control over metabolic handling of steroids in this organism. This may also explain why lactonization of 11β-hydroxytestosterone does not occur. Lactonization of the C-17 ketone was not significantly affected by the 3α-alcohol with significant yields achieved (53%). Interestingly a time course experiment demonstrated that the presence of the 3α-acetate inhibited the Baeyer–Villiger monooxygenase with its activity being observed 24 h later than non-acetate containing analogues. Apart from oxidative transformations observed a minor reductive pathway was revealed with the C-17 ketone being reduced to a C-17β-alcohol for the first time in this organism.  相似文献   

9.
Recently, the development of selective androgen receptor modulators (SARMs) has been suggested as a means of combating the deleterious catabolic effects of hypogonadism, especially in skeletal muscle and bone, without inducing the undesirable androgenic effects (e.g., prostate enlargement and polycythemia) associated with testosterone administration. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone; 17β-TBOH), a synthetic analog of testosterone, may be capable of inducing SARM-like effects as it binds to androgen receptors (ARs) with approximately three times the affinity of testosterone and has been shown to augment skeletal muscle mass and bone growth and reduce adiposity in a variety of mammalian species. In addition to its direct actions through ARs, 17β-TBOH may also exert anabolic effects by altering the action of endogenous growth factors or inhibiting the action of glucocorticoids. Compared to testosterone, 17β-TBOH appears to induce less growth in androgen-sensitive organs which highly express the 5α reductase enzyme (e.g., prostate tissue and accessory sex organs). The reduced androgenic effects result from the fact that 17β-TBOH is metabolized to less potent androgens in vivo; while testosterone undergoes tissue-specific biotransformation to more potent steroids, dihydrotestosterone and 17β-estradiol, via the 5α-reductase and aromatase enzymes, respectively. Thus the metabolism of 17β-TBOH provides a basis for future research evaluating its safety and efficacy as a means of combating muscle and bone wasting conditions, obesity, and/or androgen insensitivity syndromes in humans, similar to that of other SARMs which are currently in development.  相似文献   

10.
Steroid-binding proteins unrelated to the classical nuclear receptors have been proposed to play a role in non-genomic actions of the17-alkylated testosterone derivative (17-AA) stanozolol (ST). We have previously reported that male rat liver endoplasmic reticulum contains two steroid-binding sites associated with high molecular mass oligomeric proteins: (1) the ST-binding protein (STBP); and (2) the low-affinity glucocorticoid-binding protein (LAGS). To further explore the role of LAGS on the mechanism of action of ST, we have now studied: (1) the interaction of ST and its hydroxylated metabolites with solubilized LAGS and the cytosolic glucocorticoid receptor (GR); and (2) the effects of hormones on the capability of STBP to bind ST. We found that, unlike 17-methyltestosterone, neither ST nor its hydroxylated metabolites bind to GR. However, the 16β-hydroxylation of ST significantly increases the capability of LAGS to bind ST. Interestingly, 3′-hydroxylation of ST abrogates the capability of LAGS to bind ST. ST (ki=30 nM) and 16β-hydroxystanozolol (ki=13 nM) bind with high affinity to LAGS, and are capable of accelerating the rate of dissociation of previously bound dexamethasone from the LAGS. STBP and LAGS are strongly induced by ethinylestradiol. However, unlike STBP, LAGS is regulated by thyroid hormones and growth hormone, which proves that these steroid-binding activities are associated with different binding sites. These findings seem to suggest a novel mechanism for ST whereby membrane-associated glucocorticoid-binding activity is targeted by the 16β-hydroxylated metabolite of ST. ST and its 16β-hydroxylated metabolite modulate glucocorticoid activity in the liver through negative allosteric modulation of LAGS, with the result of this interaction an effective increase in classical GR-signaling by increasing glucocorticoid availability to the cytosolic GR.  相似文献   

11.
The fish pathogen Vibrio anguillarum produces quorum sensing signal molecules, N-acyl homoserine lactones (AHLs), which in several Gram-negative human and plant pathogenic bacteria regulate virulence factors. Expression of these factors can be blocked using specific quorum-sensing inhibitors (QSIs). The purpose of this study was to investigate the effect of a QSI, furanone C-30, on mortality of rainbow trout during challenge with V. anguillarum. Addition of 0.01 or 0.1 microM furanone C-30 to rainbow trout infected by cohabitation caused a significant reduction in accumulated mortality from 80-100% in challenge controls to 4-40% in treated groups. Furanone C-30 had no effect in an immersion challenge system, probably due to a very high water exchange and a rapid dilution of furanone C-30. Growth and survival of V. anguillarum were not affected by the concentrations of furanone C-30 used in the challenge experiments, thus avoiding selection for resistance. To elucidate the mechanism of disease control by furanone C-30, we determined its effect on the bacterial proteome, motility, and respiration. No effects were seen of furanone C-30 in any of these experiments. Although no cytotoxic effect on HeLa cells were observed, exposure to 1 microM (or higher) concentrations of furanone C-30 had detrimental effects on the rainbow trout. Our results indicate that QSIs can be used in non-antibiotic based control of fish diseases. However, they also underline the need for development of novel, less toxic QSI compounds and the need for understanding the exact mechanism(s) of action.  相似文献   

12.
The course of transformations of the pharmacological steroids: testosterone propionate, 4-chlorotestosterone acetate, 17beta-estradiol diacetate and their parent alcohols in Fusarium culmorum AM282 culture was compared. The results show that this microorganism is capable of regioselective hydrolysis of ester bonds. Only 4-ene-3-oxo steroid esters were hydrolyzed at C-17. 17beta-Estradiol diacetate underwent regioselective hydrolysis at C-3 and as a result, estrone--the main metabolite of estradiol--was absent in the reaction mixture. The alcohols resulting from the hydrolysis underwent oxidation at C-17 and hydroxylation. The same products (6beta- and 15alpha-hydroxy derivatives) as from testosterone were formed by transformation of testosterone propionate, but the quantitative composition of the mixtures obtained after transformations of both substrates showed differences. The 15alpha-hydroxy derivatives were obtained from the ester in considerably higher yield than from the parent alcohol. The presence of the chlorine atom at C-4 markedly reduced 17beta-saponification in 4-chlorotestosterone acetate. Only 3beta,15alpha-dihydroxy-4alpha-chloro-5alpha-androstan-17-one (the main product of transformation of 4-chlorotestosterone) was identified in the reaction mixture. 6beta-Hydroxy-4-chloroandrostenedione, which was formed from 4-chlorotestosterone, was not detected in the extract obtained after conversion of its ester.  相似文献   

13.
The female sex steroid, estradiol 17, mediates its effect through its association with estrogen receptor present in the target cell. So far the major emphasis has been given to the genomic actions of the hormone mediated by the nuclear estrogen receptors. Recent years have seen a shift in the ideas revealing the existence of estradiol binding entities both in the plasma membrane and the endoplasmic reticulum. Though the true identity of this membrane associated receptors is far from being known, a functional role for the same have been implicated both at the genomic as well as the non-genomic level. The major focus of the review is to highlight the existence of membrane associated estrogen receptors and receptor-related proteins and the functional roles played by some of them. The signalling events exerted by this class of membrane associated estrogen receptor could partly explain the physiological significance of estrogen in cardiovascular disease, osteoporosis and breast cancer as well as the molecular mechanism associated with xenoestrogen action.  相似文献   

14.
Estrogens play a critical role in the regulation of cellular proliferation, differentiation, and apoptosis. Evidence indicates that this regulation is mediated by a complex interface of direct control of gene expression (so-called "genomic action") and by regulation of cell-signaling/phosphorylation cascades (referred to as the "non-genomic", or "extranuclear" action). However, the mechanisms of the non-genomic action of estrogens are not well defined. We have recently described the identification of a novel scaffold protein termed MNAR (modulator of non-genomic action of estrogen receptor), that couples conventional steroid receptors with extranuclear signal transduction pathways, thus potentially providing additional and tissue- or cell-specific level of steroid hormone regulation of cell functions. We have demonstrated that the MNAR is required for ER alpha (ERa) interaction with p60(src) (Src), which leads to activation of Src/MAPK pathway. Our new data also suggest that activation of cSrc in response to E2 leads to MNAR phosphorylation, interaction with p85, and activation of the PI3 and Akt kinases. These data therefore suggest that MNAR acts as an important scaffold that integrates ERa action in regulation of important signaling pathways. ERa non-genomic action has been suggested to play a key role in estrogen-induced cardio-, neuro-, and osteo-protection. Therefore, evaluation of the molecular crosstalk between MNAR and ERa may lead to development of functionally selective ER modulators that can separate between beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS and the "detrimental", proliferative effects in reproductive tissues and organs.  相似文献   

15.
Dehydroepiandrosterone (DHEA) is commonly used as a nutritional supplement to control fat deposition, but the mechanism of this action is poorly understood. In this study, we demonstrated that DHEA increased phosphorylation of AMP-activated protein kinase (p-AMPK). Elevated p-AMPK levels resulted in reduced expression of sterol regulatory element binding protein-1c, acetyl CoA carboxylase, fatty acid synthase and enhanced expression of peroxisome proliferators-activated receptor α and carnitine palmitoyl transferase-I, ultimately leading to the reduction of lipid droplet accumulation in primary chicken hepatocytes. We found that DHEA activates the cyclic adenosine 3′, 5′-monophosphate/protein kinase A - extracellular signal-regulated kinase 1/2 (cAMP/PKA-ERK1/2) signaling pathway, which regulates the conversion of DHEA into testosterone and estradiol by increasing the 17β-hydroxysteroid dehydrogenase and aromatase protein expression. Importantly, the fat-reducing effects of DHEA are more closely associated with the conversion of DHEA into estradiol than with the action of DHEA itself as an active biomolecule, or to its alternative metabolite, testosterone. Taken together, our results indicate that DHEA is converted into active hormones through activation of the cAMP/PKA-ERK1/2 signaling pathway; the fat-reducing effects of DHEA are achieved through its conversion into estradiol, not testosterone, and not through direct action of DHEA itself, which led to the activation of the p-AMPK in primary chicken hepatocytes. These data provide novel insight into the mechanisms underlying the action of DHEA in preventing fat deposition, and suggest potential applications for DHEA treatment to control fat deposition or as an agent to treat disorders related to lipid metabolism in animals and humans.  相似文献   

16.
Gelpi ME  Cadenas RA  Mosettig J  Zuazo BN 《Steroids》2002,67(3-4):263-267
Steroidal nucleoside analogs were synthesized starting from testosterone. By reduction of the oxime of 17 beta-hydroxy-androst-4-en-3-one (testosterone), a mixture of the two amino epimers of C-3 were obtained. The 3 alpha-amino-androst-4-en-17 beta-ol was crystallized in 73% yield and coupled with 5-amino-4,6-dichloropyrimidine to give 3 alpha-(5'-amino-4'-chloro-pyrimidin-6'-yl)amino-androst-4-en-17 beta-ol. This compound was treated with triethyl orthoformate in acid media to give the corresponding purinyl steroid adduct 3 alpha-(6'-chloro-purin-9'-yl)-androst-4-en-17 beta-ol in 98% yield. This substance, in turn, was converted with good yield into the 6'-thio, 6'-methylamino, and 6'-diethyl aminopurinyl derivatives through nucleophilic reactions at C-6 of the purine nucleus.  相似文献   

17.
A purified rat hepatic monooxygenase system containing cytochrome P-450b oxidizes testosterone to androstenedione and 16 alpha- and 16 beta-hydroxytestosterone at approximately equal rates. The metabolism of epitestosterone by the same system is characterized by a marked stereoselectivity in favor of 16 beta-hydroxylation (4- to 5-fold relative to 16 alpha-hydroxylation), formation of 15 alpha-hydroxyepitestosterone, and a rate of androstenedione formation which is three to five times higher than that observed with testosterone. Apparent Km values for 16 alpha- and 16 beta-hydroxylation and androstenedione formation are 20-30 microM with either substrate. Mass spectral analysis of the androstenedione formed from [16,16-2H2]testosterone and [16,16-2H2] epitestosterone indicates essentially complete retention of deuterium, thereby ruling out a mechanism of androstenedione formation via C-16 hydroxylation followed by loss of water and rearrangement. Mass spectral analysis of the C-16 hydroxylation products from incubations of testosterone or epitestosterone in 18O2 shows essentially complete incorporation of 18O (greater than 95%). Androstenedione formed from testosterone is enriched in 18O only 2-fold (5-8%) over background, while the androstenedione formed from epitestosterone shows 84% enrichment. Kinetic experiments utilizing [17-2H]testosterone and [17-2H]epitestosterone as substrates indicate that cleavage of the C-17 carbon-hydrogen bond is involved in a rate-limiting step in the formation of androstenedione from both substrates. Taken together, our results indicate that androstenedione formation from epitestosterone proceeds exclusively through the gem-diol pathway, while androstenedione formation from testosterone may proceed through a combination of gem-diol and dual hydrogen abstraction pathways.  相似文献   

18.
Estrogen signaling multiple pathways to impact gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

19.
Non-genomic transgenerational inheritance of disease risk   总被引:3,自引:0,他引:3  
That there is a heritable or familial component of susceptibility to chronic non-communicable diseases such as type 2 diabetes, obesity and cardiovascular disease is well established, but there is increasing evidence that some elements of such heritability are transmitted non-genomically and that the processes whereby environmental influences act during early development to shape disease risk in later life can have effects beyond a single generation. Such heritability may operate through epigenetic mechanisms involving regulation of either imprinted or non-imprinted genes but also through broader mechanisms related to parental physiology or behaviour. We review evidence and potential mechanisms for non-genomic transgenerational inheritance of 'lifestyle' disease and propose that the 'developmental origins of disease' phenomenon is a maladaptive consequence of an ancestral mechanism of developmental plasticity that may have had adaptive value in the evolution of generalist species such as Homo sapiens.  相似文献   

20.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号