首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pokeweed antiviral protein (PAP), a single chain ribosome-inactivating protein (RIP) isolated from pokeweed plants (Phytolacca americana), removes specific adenine and guanine residues from the highly conserved, alpha-sarcin/ricin loop in the large rRNA, resulting in inhibition of protein synthesis. We recently demonstrated that PAP could also inhibit translation of mRNAs and viral RNAs that are capped by binding to the cap structure and depurinating the RNAs downstream of the cap. Cell growth is inhibited when PAP cDNA is expressed in the yeast Saccharomyces cerevisiae under the control of the galactose-inducible GAL1 promoter. Here, we show that overexpression of wild type PAP in yeast leads to a decrease in PAP mRNA abundance. The decrease in mRNA levels is not observed with an active site mutant, indicating that it is due to the N-glycosidase activity of the protein. PAP expression had no effect on steady state levels of mRNA from four different endogenous yeast genes examined, indicating specificity. We demonstrate that PAP can depurinate the rRNA in trans in a translation-independent manner. When rRNA is depurinated and translation is inhibited, the steady state levels of PAP mRNA increase dramatically relative to the U3 snoRNA. Using a PAP variant which depurinates rRNA, inhibits translation but does not destabilize its mRNA, we demonstrate that PAP mRNA is destabilized after its levels are up-regulated by a mechanism that occurs independently of rRNA depurination and translation. We quantify the extent of rRNA depurination in vivo using a novel primer extension assay and show that the temporal pattern of rRNA depurination is similar to the pattern of PAP mRNA destabilization, suggesting that they may occur by a common mechanism. These results provide the first in vivo evidence that a single chain RIP targets not only the large rRNA but also its own mRNA. These findings have implications for understanding the biological function of RIPs.  相似文献   

3.
4.
Parikh BA  Baykal U  Di R  Tumer NE 《Biochemistry》2005,44(7):2478-2490
Pokeweed antiviral protein (PAP) is a single-chain ribosome inactivating protein (RIP) that binds to ribosomes and depurinates the highly conserved alpha-sarcin/ricin loop (SRL) of the large subunit rRNA. Catalytic depurination of a specific adenine has been proposed to result in translation arrest and cytotoxicity. Here, we show that both precursor and mature forms of PAP are localized in the endoplasmic reticulum (ER) in yeast. The mature form is retro-translocated from the ER into the cytosol where it escapes degradation unlike the other substrates of the retro-translocation pathway. A mutation of a highly conserved asparagine residue at position 70 (N70A) delays ribosome depurination and the onset of translation arrest. The ribosomes are eventually depurinated, yet cytotoxicity and loss of viability are markedly absent. Analysis of the variant protein, N70A, does not reveal any decrease in the rate of synthesis, subcellular localization, or the rate of transport into the cytosol. N70A destabilizes its own mRNA, binds to cap, and blocks cap dependent translation, as previously reported for the wild-type PAP. However, it cannot depurinate ribosomes in a translation-independent manner. These results demonstrate that N70 near the active-site pocket is required for depurination of cytosolic ribosomes but not for cap binding or mRNA destabilization, indicating that the activity of PAP on capped RNA can be uncoupled from its activity on rRNA. These findings suggest that the altered active site of PAP might accommodate a narrower range of substrates, thus reducing ribotoxicity while maintaining potential therapeutic benefits.  相似文献   

5.
6.
7.
8.
Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.  相似文献   

9.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that depurinates the highly conserved α-sarcin/ricin loop in the large rRNA. Here, using site-directed mutagenesis and systematic deletion analysis from the 5′ and the 3′ ends of the PAP cDNA, we identified the amino acids important for ribosome depurination and cytotoxicity of PAP. Truncating the first 16 amino acids of PAP eliminated its cytotoxicity and the ability to depurinate ribosomes. Ribosome depurination gradually decreased upon the sequential deletion of C-terminal amino acids and was abolished when a stop codon was introduced at Glu-244. Cytotoxicity of the C-terminal deletion mutants was lost before their ability to depurinate ribosomes. Mutations in Tyr-123 at the active site affected cytotoxicity without altering the ribosome depurination ability. Total translation was not inhibited in yeast expressing the non-toxic Tyr-123 mutants, although ribosomes were depurinated. These mutants depurinated ribosomes only during their translation and could not depurinate ribosomes in trans in a translation-independent manner. A mutation in Leu-71 in the central domain affected cytotoxicity without altering the ability to depurinate ribosomes in trans and inhibit translation. These results demonstrate that the ability to depurinate ribosomes in trans in a catalytic manner is required for the inhibition of translation, but is not sufficient for cytotoxicity.  相似文献   

10.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.  相似文献   

11.
Pokeweed antiviral protein (PAP) is a naturally occurring broad-spectrum antiviral agent with potent anti-human immunodeficiency virus (HIV)-1 activity by an as yet undeciphered molecular mechanism. In the present study, we sought to determine if PAP is capable of recognizing and depurinating viral RNA. Depurination of viral RNA was monitored by directly measuring the amount of the adenine base released from the viral RNA species using quantitative high-performance liquid chromatography. Our findings presented herein provide direct evidence that three different PAP isoforms from Phytolacca americana (PAP-I from spring leaves, PAP-II from early summer leaves, and PAP-III from late summer leaves) cause concentration-dependent depurination of genomic RNA (63 to 400 pmols of adenine released per micrograms of RNA) purified from human immunodeficiency virus type-I (HIV-I), plant virus (tobacco mosaic virus (TMV), and bacteriophage (MS 2). In contrast to the three PAP isoforms, ricin A chain (RTA) failed to cause detectable depurination of viral RNA even at 5 microM, although it was as effective as PAP in inhibiting protein synthesis in cell-free translation assays. PAP-I, PAP-II, and PAP-III (but not RTA) inhibited the replication of HIV-1 in human peripheral blood mononuclear cells with IC(50) values of 17 nM, 25 nM, and 16 nM, respectively. These findings indicate that the highly conserved active site residues responsible for the depurination of rRNA by PAP or RTA are not sufficient for the recognition and depurination of viral RNA. Our study prompts the hypothesis that the potent antiviral activity of PAP may in part be due to its unique ability to extensively depurinate viral RNA, including HIV-1 RNA.  相似文献   

12.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   

13.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

14.
Pokeweed antiviral protein (PAP), a ribosome-inactivating protein isolated from Phytolacca americana, is characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. In this study, we present evidence that PAP is associated with ribosomes and depurinates tobacco ribosomes in vivo by removing more than one adenine and a guanine. A mutant of pokeweed antiviral protein, PAPn, which has a single amino acid substitution (G75D), did not bind ribosomes efficiently, indicating that Gly-75 in the N-terminal domain is critical for the binding of PAP to ribosomes. PAPn did not depurinate ribosomes and was non-toxic when expressed in transgenic tobacco plants. Unlike wild-type PAP and a C-terminal deletion mutant, transgenic plants expressing PAPn did not have elevated levels of acidic pathogenesis-related (PR) proteins. PAPn, like other forms of PAP, did not trigger production of salicylic acid (SA) in transgenic plants. Expression of the basic PR proteins, the wound-inducible protein kinase and protease inhibitor II, was induced in PAPn-expressing transgenic plants and these plants were resistant to viral and fungal infection. These results demonstrate that PAPn activates a particular SA-independent, stress-associated signal transduction pathway and confers pathogen resistance in the absence of ribosome binding, rRNA depurination and acidic PR protein production.  相似文献   

15.
Depurination of plant ribosomes by pokeweed antiviral protein   总被引:4,自引:0,他引:4  
B E Taylor  J D Irvin 《FEBS letters》1990,273(1-2):144-146
Mammalian ribosomes have been shown to be enzymatically modified by ribosomal inactivating protein (RIPs) via specific depurination of rRNA. Here we report that ribosomes isolated from wheat germ contain intact and undepurinated rRNA and are depurinated by pokeweed antiviral protein (PAP). Pokeweed ribosomes isolated under the same conditions are depurinated. Total RNA isolated from pokeweed in the presence of strong denaturants was found to pbe partially depurinated. We conclude that wheat germ ribosomes are resistant to the endogenous RIP, tritin, but are sensitive to PAP and that pokeweed ribosomes can be depurinated by the N-glycosidase activity of endogenous PAP during isolation.  相似文献   

16.
Pokeweed antiviral protein (PAP) is a ribosome inactivating protein isolated from the pokeweed plant (Phytolacca americana L.) that exhibits broad range antiviral activity against several human viruses including HIV and influenza. This characteristic suggests that PAP may have therapeutic applications; however, it is not known whether the protein elicits a ribotoxic stress response that would result in cell death. Therefore, we expressed PAP in 293T cells and showed that the enzyme did not inhibit protein translation even though approximately 15% of the ribosomal RNA (rRNA) was depurinated. PAP expression induced the activation of c-Jun NH2-terminal kinase (JNK), which was specific to rRNA depurination, as the enzymatically inactive mutant PAPx did not affect kinase activity. Moreover, incubation of PAP-expressing cells with translation inhibitors diminished JNK activation, indicating that the signal for induction of the kinase pathway originated from ribosomes. JNK activation did not result in apoptosis as demonstrated by the absence of caspase-3 and poly(ADP-ribose) polymerase cleavage and by the lack of cell staining for morphological changes in membrane permeability. Unlike all ribosome inactivating proteins tested thus far, the stress response triggered by PAP expression did not result in cell death, which supports further investigation of the enzyme in the design of novel antiviral agents.  相似文献   

17.
18.
Pokeweed antiviral protein (PAP) produced by pokeweed plants is a single-chain (type I) ribosome-inactivating protein (RIP) that depurinates ribosomes at the alpha-sarcin/ricin loop of the large rRNA, resulting in inhibition of translation. Unlike the type II RIPs, which have an active and a binding moiety, PAP has only the active moiety. The mechanism by which toxins without a binding moiety gain access to cytosolic ribosomes is not known. We set up yeast as a simple and genetically tractable system to investigate how PAP accesses ribosomes and showed that the mature form of PAP is targeted to the cytosol from the endomembrane system in yeast. In the present study, we performed a systematic deletion analysis to identify the signal required for transport of PAP to the cytosol. We demonstrate here that processing of the C-terminal extension and sequences at the C-terminus of the mature protein are critical for its accumulation in the cytosol. Using a series of PAP mutants, we identified the C-terminal signal and demonstrated that it is distinct from the sequences required for ribosome depurination and cytotoxicity. The C-terminal motif showed sequence similarity to type II RIPs that retrotranslocate from the endoplasmic reticulum to the cytosol. These results demonstrate that a conserved sequence at the C-terminus of a type I RIP mediates its transport to the cytosol and suggest that type I and II RIPs may use a common signal to enter the cytosol.  相似文献   

19.
An antiviral protein (25 kD) isolated from leaves of Celosia cristata (CCP 25) was tested for depurination study on ribosomal RNA from yeast. Ribosomal RNA yielded 360 nucleotide base fragment after treatment with CCP 25 indicating that CCP 25 was a ribosome inactivating protein. CCP 25 also inhibited translation of brome mosaic virus (BMV) and pokeweed mosaic virus (PMV) RNAs in rabbit reticulocyte translation system. The radioactive assay showed that incorporation of [35S]-methionine was less in translation proteins of BMV nucleic acid when CCP 25 was added to translation system. This indicated that antiviral protein from Celosia cristata not only depurinated ribosomal RNA but also inhibited translation of viral RNA in vitro.  相似文献   

20.
Rajamohan F  Ozer Z  Mao C  Uckun FM 《Biochemistry》2001,40(31):9104-9114
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP) which catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop (SRL) of the large ribosomal RNA and thereby inhibits the protein synthesis. The ribosomal protein L3, a highly conserved protein located at the peptidyltransferase center of the ribosomes, is involved in binding of PAP to ribosomes and subsequent depurination of the SRL. We have recently discovered that recombinant PAP mutants with alanine substitution of the active center cleft residues (69)NN(70) (FLP-4) and (90)FND(92) (FLP-7) that are not directly involved in the catalytic depurination at the active site exhibit >150-fold reduced ribosome inhibitory activity [(2000) J. Biol. Chem. 275, 3382--3390]. We hypothesized that the partially exposed half of the active site cleft could be the potential docking site for the L3 molecule. Our modeling studies presented herein indicated that PAP residues 90--96, 69--70, and 118--120 potentially interact with L3. Therefore, mutations of these residues were predicted to result in destabilization of interactions with rRNA and lead to a lower binding affinity with L3. In the present structure-function relationship study, coimmunoprecipitation assays with an in vitro synthesized yeast ribosomal protein L3 suggested that these mutant PAP proteins poorly interact with L3. The binding affinities of the mutant PAP proteins for ribosomes and recombinant L3 protein were calculated from rate constants and analysis of binding using surface plasmon resonance biosensor technology. Here, we show that, compared to wild-type PAP, FLP-4/(69)AA(70) and FLP-7/(90)AAA(92) exhibit significantly impaired affinity for ribosomes and L3 protein, which may account for their inability to efficiently inactivate ribosomes. By comparison, recombinant PAP mutants with alanine substitutions of residues (28)KD(29) and (111)SR(112) that are distant from the active center cleft showed normal binding affinity to ribosomes and L3 protein. The single amino acid mutants of PAP with alanine substitution of the active center cleft residues N69 (FLP-20), F90 (FLP-21), N91 (FLP-22), or D92 (FLP-23) also showed reduced ribosome binding as well as reduced L3 binding, further confirming the importance of the active center cleft for the PAP--ribosome and PAP--L3 interactions. The experimental findings presented in this report provide unprecedented evidence that the active center cleft of PAP is important for its in vitro binding to ribosomes via the L3 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号