首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The only cytosine methylase in Escherichia coli K-12 methylates the second cytosine in the sequence CC (A/T)GG and is encoded by gene dcm. Methylation and very short patch mismatch repair activities lacking in a dcm mutant of E. coli were restored by a plasmid containing the cloned dcm gene. In contrast, plasmids with the gene for EcoRII methylase, which is a homolog of dcm, restored only cytosine methylase activity and not mismatch repair.  相似文献   

2.
The effects of DNA methyltransferases on Tn3 transposition were investigated. The E. coli dam (deoxyadenosine methylase) gene was found to have no effect on Tn3 transposition. In contrast, Tn3 was found to transpose more frequently in dcm+ (deoxycytosine methylase) cells than in dcm- mutants. When the EcoRII methylase gene was introduced into dcm- cells (E. coli strain GM208), the frequency of Tn3 transposition in GM208 was dramatically increased. The EcoRII methylase recognizes and methylates the same sequence as does the dcm methylase. These results suggest that deoxycytosine methylase modified DNA may be a preferred target for Tn3 transposition. Experiments were also performed to determine whether the Tn3 transposase was involved in DNA modification. Plasmid DNA isolated from dcm- E. coli containing the Tn3 transposase gene was susceptible to ApyI digestion but resistant to EcoRI digestion, suggesting that Tn3 transposase modified the dcm recognition sequence. In addition, restriction enzymes TaqI, AvaII, BglI and HpaII did not digest this DNA completely, suggesting that the recognition sequences of TaqI, AvaII, BglI and HpaII were modified by Tn3 transposase to a certain degree. The type(s), the extent and mechanism(s) of this modification remain to be investigated.  相似文献   

3.
The shuttle Escherichia coli - Streptomyces plasmids were used to transform S. lividans 66. Plasmid DNAs isolated from this strain transform it 10-1000-fold more efficiently than DNAs from E. coli. Rare transformant cured from most restricted plasmid is more efficient recipient of plasmid DNA from E. coli and has the property of R +/- M+ mutant. Restriction in S. lividans 66 correlates with the appearance in DNA from E. coli of the sites susceptible to Scg2I restriction endonuclease. The latter was isolated earlier from recombinant strain Rcg2, a hybrid between S. griseus Kr. 15 and S. coelicolor A3(2). Scg2I possesses the recognition sequence CCTAGG, like EcoRII, MvaI and Eco dcm methylase. The DNA resistant to Scg2I cleavage retained this ability after in vitro modification by EcoRII methylase. So, the resistance of DNA to Scg2I cleavage is not connected with methylation at 4th and 5th position of second cytosine in the recognition sequence. Neither restriction of plasmid DNA in S. lividans 66 is dependent on dcm modification in E. coli, though its dependence on dam modification is not excluded. It is assumed that the restriction in S. lividans 66 is specified by endonuclease analogous to Scg2I.  相似文献   

4.
Restriction analysis of plasmid pHV14 deoxyribonucleic acid isolated from Escherichia coli K-12, Bacillus subtilis, and staphylococcus aureus with restriction endonucleases MboI, Sau3AI, and EcoRII was used to study the methylation of those nucleotide sequences which in E. coli contain the major portions of N6-methyladenine and 5-methylcytosine. The results showed that neither B. subtilis nor S. aureus methylates deoxyribonucleic acid at the same sites and nucleotides which are recognized and methylated by dam and dcm enzymes in E. coli K-12.  相似文献   

5.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

6.
Cloning and structure of the BepI modification methylase.   总被引:7,自引:7,他引:0       下载免费PDF全文
The gene coding for a CGCG specific DNA methylase has been cloned in E. coli from Brevibacterium epidermidis. The enzyme, named BepI methylase, is probably the cognate methylase of the FnuDII isoschizomer BepI endonuclease isolated from this strain. The expression of BepI methylase in E. coli is dependent on the orientation of the cloned fragment suggesting that the gene is transcribed from a promoter on the plasmid vector. No BepI endonuclease could be detected in the clones producing BepI methylase. The nucleotide sequence of the BepI methylase gene has been determined, it predicts a protein of 403 amino acids (MR: 45,447). Analysis of the amino acid sequence deduced from the nucleotide sequence revealed similarities between the BepI methylase and other cytosine methylases. M. BepI methylates the external cytosine in its recognition sequence.  相似文献   

7.
The methylations of adenine in the sequence -GATC- and of the second cytosine in the sequence - [Formula: see text] - were studied in Salmonella typhimurium and in Salmonella typhi. The study was carried out by using endonucleases which restrict the plasmid pBR322 by cleavage at the sequences -GATC- (DpnI and MboI) and - [Formula: see text] - (EcoRII). The restriction patterns obtained for this plasmid isolated from transformed S. typhimurium and S. typhi were compared with those of pBR322 isolated from Escherichia coli K-12. In E. coli K-12, adenines at the sequence -GATC- and the second cytosines at - [Formula: see text] - are met hylated by enzymes coded for by the genes dam and dem, respectively. From comparison of the restriction patterns obtained, it is concluded that S. typhimurium and S. typhi contain genes responsible for deoxyribonucleic acid methylation equivalent to E. coli K-12 genes dam and dcm.  相似文献   

8.
We report the integration of a type II restriction-methylase, mFokI, into the tobacco chloroplast genome and we demonstrate that the introduced enzyme effectively directs the methylation of its target sequence in vivo and does not affect maternal inheritance. We further report the transformation of tobacco with an E. coli dcm methylase targeted to plastids and we demonstrate efficient cytosine methylation of the plastid genome. Both adenosine methylation of FokI sites and cytosine methylation of dcm sites appeared phenotypically neutral. The ability to tolerate such plastid genome methylation is a pre-requisite for a proposed plant transgene containment system. In such a system, a chloroplast located, maternally inherited restriction methylase would provide protection from a nuclear-encoded, plastid targeted restriction endonuclease. As plastids are not paternally inherited in most crop species, pollen from such plants would carry the endonuclease transgene but not the corresponding methylase; the consequence of this should be containment of all nuclear transgenes, as pollination will only be viable in crosses to the appropriate transplastomic maternal background.  相似文献   

9.
DNA containing 5-azacytosine is an irreversible inhibitor of DNA(cytosine-5)methyltransferase. This paper describes the binding of DNA methyltransferase to 32P-labeled fragments of DNA containing 5-azacytosine. The complexes were identified by gel electrophoresis. The EcoRII methyltransferase specified by the R15 plasmid was purified from Escherichia coli B(R15). This enzyme methylates the second C in the sequence CCAGG and has a molecular mass of 60,000 Da. Specific binding of enzyme to DNA fragments could be detected if either excess unlabeled DNA or 0.8% sodium dodecyl sulfate was added to the reaction mixture prior to electrophoresis. Binding was dependent upon the presence of both the CCAGG sequence and azacytosine in the DNA fragment. S-Adenosylmethionine stimulated the formation of the complex. The complex was stable to 6 M urea but could be digested with pronase. These DNA fragments could be used to detect the presence of several different methyltransferases in crude extracts of E. coli. No DNA protein complexes could be detected in E. coli B extracts, a strain that contains no DNA(cytosine-5)methyltransferases. The chromosomally determined methylase with the same specificity as the purified EcoRII methylase could be detected in crude extracts of E. coli K12 strains. The MspI methylase cloned in E. coli HB101 could also be detected in crude extracts. These enzymes are the only proteins that bind azacytosine-containing DNA in crude extracts of E. coli.  相似文献   

10.
This communicatiopn describes some properties of RCfr13 I and MCfr13 I, isolated from Citrobacter freundii RFL13. RCFfr13 I restriction enzyme recognizes the 5'-G GNCC sequence and cleaves, as indicated by the arrow. MCfr13 I methylase modifies the internal cytosine producing m5C (5'-GGNm5CC). RCfr13 I is sensitive not only to this type of substrate modification but also to hemimethylation in overlapping sites by MCfr10 I (internal cytosine of RCfr13 I recognition is methylated) and MHpa II (external cytosine is methylated). From these results the sensitivity of RCfr13 I to methylation by dcm methylase of E.coli in overlapping sites is deduced.  相似文献   

11.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

12.
A Sohail  M Lieb  M Dar    A S Bhagwat 《Journal of bacteriology》1990,172(8):4214-4221
Deamination of 5-methylcytosine in DNA results in T/G mismatches. If unrepaired, these mismatches can lead to C-to-T transition mutations. The very short patch (VSP) repair process in Escherichia coli counteracts the mutagenic process by repairing the mismatches in favor of the G-containing strand. Previously we have shown that a plasmid containing an 11-kilobase fragment from the E. coli chromosome can complement a chromosomal mutation defective in both cytosine methylation and VSP repair. We have now mapped the regions essential for the two phenotypes. In the process, we have constructed plasmids that complement the chromosomal mutation for methylation, but not for repair, and vice versa. The genes responsible for these phenotypes have been identified by DNA sequence analysis. The gene essential for cytosine methylation, dcm, is predicted to code for a 473-amino-acid protein and is not required for VSP repair. It is similar to other DNA cytosine methylases and shares extensive sequence similarity with its isoschizomer, EcoRII methylase. The segment of DNA essential for VSP repair contains a gene that should code for a 156-amino-acid protein. This gene, named vsr, is not essential for DNA methylation. Remarkably, the 5' end of this gene appears to overlap the 3' end of dcm. The two genes appear to be transcribed from a common promoter but are in different translational registers. This gene arrangement may assure that Vsr is produced along with Dcm and may minimize the mutagenic effects of cytosine methylation.  相似文献   

13.
DdeI, a Type II restriction-modification system from the gram-negative anaerobic bacterium Desulfovibrio desulfuricans, recognizes the sequence CTNAG. The system has been cloned into E. coli in two steps. First the methylase gene was cloned into pBR322 and a derivative expressing higher levels was constructed. Then the endonuclease gene was located by Southern blot analyses; BamHI fragments large enough to contain the gene were cloned into pACYC184, introduced into a host containing the methylase gene, and screened for endonuclease activity. Both genes are stably maintained in E. coli on separate but compatible plasmids. The DdeI methylase is shown to be a cytosine methylase. DdeI methylase clones decrease in viability as methylation activity increases in E. coli RR1 (our original cloning strain). Therefore the DdeI system has been cloned and maintained in ER1467, a new E. coli cloning strain engineered to accept cytosine methylases. Finally, it has been demonstrated that a very high level of methylation was necessary in the DdeI system for successful introduction of the active endonuclease gene into E. coli.  相似文献   

14.
We describe here the cloning, characterization and expression in E. coli of the gene coding for a DNA methylase from Spiroplasma sp. strain MQ1 (M.SssI). This enzyme methylates completely and exclusively CpG sequences. The Spiroplasma gene was transcribed in E. coli using its own promoter. Translation of the entire message required the use of an opal suppressor, suggesting that UGA triplets code for tryptophan in Spiroplasma. Sequence analysis of the gene revealed several UGA triplets, in a 1158 bp long open reading frame. The deduced amino acid sequence revealed in M.SssI all common domains characteristic of bacterial cytosine DNA methylases. The putative sequence recognition domain of M.SssI showed no obvious similarities with that of the mouse DNA methylase, in spite of their common sequence specificity. The cloned enzyme methylated exclusively CpG sequences both in vivo and in vitro. In contrast to the mammalian enzyme which is primarily a maintenance methylase, M.SssI displayed de novo methylase activity, characteristic of prokaryotic cytosine DNA methylases.  相似文献   

15.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

16.
Mismatch repair of deaminated 5-methyl-cytosine   总被引:19,自引:0,他引:19  
Deamination of 5-methyl-cytosine in double-stranded DNA produces a G-T mismatch. Heteroduplexes of bacteriophage lambda DNA containing a G-T mismatch at the site of a G-5-meC base-pair in one of the parental phages were constructed and used to transfect Escherichia coli cells. Genetic analysis of the progeny phages derived from such heteroduplexes suggests that, in E. coli, mismatches resulting from the deamination of 5-methyl-cytosine are repaired by a system requiring the E. coli dcm methylase and some, but not all, of the functions of the E. coli methyl-directed mismatch repair system. The repair appears to act only on the G-T mismatch and acts specifically to restore the cytosine methylation sequence.  相似文献   

17.
The HpaII methylase (M.HpaII) recognizes the sequence CCGG and methylates the inner cytosine residue. The MspI methylase (MspI) recognizes the same sequence but methylates the outer cytosine residue. Both methylases have the usual architecture of 10 well-conserved motifs surrounding a variable region, responsible for sequence specific recognition, that is quite different in the two methylases. We have constructed hybrids between these two methylases and studied their methylation properties. A hybrid containing the variable region and C-terminal sequences from M.MspI methylates the outer cytosine residue. A second hybrid identical to the first except that the variable region derives from the M.HpaII methylates the inner cytosine residue. Thus the choice of base to be methylated within the recognition sequence is determined by the variable region.  相似文献   

18.
K Backman 《Gene》1980,11(1-2):169-171
Methylation of adenine and cytosine residues in DNA isolated from common strains of Escherichia coli K-12 can render that DNA resistant to cleavage by certain restriction endonucleases at those sites at which the recognition sequence for such an endonuclease overlaps (but does not include) a sequence recognized by methylases specified by the dam or dcm gene.  相似文献   

19.
The proposed mechanism for DNA (cytosine-5)-methyltransferases envisions a key role for a cysteine residue. It is expected to form a covalent link with carbon 6 of the target cytosine, activating the normally inactive carbon 5 for methyl transfer. There is a single conserved cysteine among all DNA (cytosine-5)-methyltransferases making it the candidate nucleophile. We have changed this cysteine to other amino acids for the EcoRII methylase; which methylates the second cytosine in the sequence 5'-CCWGG-3'. Mutants were tested for their methyl transferring ability and for their ability to form covalent complexes with DNA. The latter property was tested indirectly with the use of a genetic assay involving sensitivity of cells to 5-azacytidine. Replacement of the conserved cysteine with glycine, valine, tryptophan or serine led to an apparent loss of methyl transferring ability. Interestingly, cells carrying the mutant with serine did show sensitivity to 5-azacytidine, suggesting the ability to link to DNA. Unexpectedly, substitution of the cysteine with glycine results in the inhibition of cell growth and the mutant allele can be maintained in the cells only when it is poorly expressed. These results suggest that the conserved cysteine in the EcoRII methylase is essential for methylase action and it may play more than one role in it.  相似文献   

20.
The DdeI restriction-modification system was previously cloned and has been maintained in E. coli on two separate and compatible plasmids (1). The nucleotide sequence of the endonuclease and methylase genes has now been determined; it predicts proteins of 240 amino acids, Mr = 27,808, and 415 amino acids, Mr = 47,081, respectively. Inspection of the DNA sequence shows that the 3' end of the methylase gene had been deleted during cloning. The clone containing the complete methylase gene was made and compared to that containing the truncated gene; only clones containing the truncated form support the endonuclease gene in E. coli. Bal-31 deletion studies show that methylase expression in the Dde clones is also dependent upon orientation of the gene with respect to pBR322. The truncated and complete forms of the methylase protein were purified and compared; the truncated form appears to be more stable and active in vitro. Finally, comparison of the deduced amino acid sequence of M. DdeI with that of other known cytosine methylases shows significant regions of homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号