共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cheng HT Kim M Valerius MT Surendran K Schuster-Gossler K Gossler A McMahon AP Kopan R 《Development (Cambridge, England)》2007,134(4):801-811
The Notch pathway regulates cell fate determination in numerous developmental processes. Here we report that Notch2 acts non-redundantly to control the processes of nephron segmentation through an Rbp-J-dependent process. Notch1 and Notch2 are detected in the early renal vesicle. Genetic analysis reveals that only Notch2 is required for the differentiation of proximal nephron structures (podocytes and proximal convoluted tubules) despite the presence of activated Notch1 in the nuclei of putative proximal progenitors. The inability of endogenous Notch1 to compensate for Notch2 deficiency may reflect sub-threshold Notch1 levels in the nucleus. In line with this view, forced expression of a gamma-secretase-independent form of Notch1 intracellular domain drives the specification of proximal fates where all endogenous, ligand-dependent Notch signaling is blocked by a gamma-secretase inhibitor. These results establish distinct (non-redundant), instructive roles for Notch receptors in nephron segmentation. 相似文献
3.
4.
Bonny B. Millimaki 《Developmental biology》2010,338(2):262-121
Sox2 has been variously implicated in maintenance of pluripotent stem cells or, alternatively, early stages of cell differentiation, depending on context. In the developing inner ear, Sox2 initially marks all cells in the nascent sensory epithelium and, in mouse, is required for sensory epithelium formation. Sox2 is eventually downregulated in hair cells but is maintained in support cells, the functional significance of which is unknown. Here we describe regulation and function of sox2 in the zebrafish inner ear. Expression of sox2 begins after the onset of sensory epithelium development and is regulated by Atoh1a/b, Fgf and Notch. Knockdown of sox2 does not prevent hair cell production, but the rate of accumulation is reduced due to sporadic death of differentiated hair cells. We next tested the capacity for hair cell regeneration following laser ablation of mature brn3c:gfp-labeled hair cells. In control embryos, regeneration of lost hair cells begins by 12 h post-ablation and involves transdifferentiation of support cells rather than asymmetric cell division. In contrast, regeneration does not occur in sox2-depleted embryos. These data show that zebrafish sox2 is required for hair cell survival, as well as for transdifferentiation of support cells into hair cells during regeneration. 相似文献
5.
Rodriguez S Sickles HM Deleonardis C Alcaraz A Gridley T Lin DM 《Developmental biology》2008,314(1):40-58
Notch receptors are expressed in neurons and glia in the adult nervous system, but why this expression persists is not well-understood. Here we examine the role of the Notch pathway in the postnatal mouse main olfactory system, and show evidence consistent with a model where Notch2 is required for maintaining sustentacular cell function. In the absence of Notch2, the laminar nature of these glial-like cells is disrupted. Hes1, Hey1, and Six1, which are downstream effectors of the Notch pathway, are down-regulated, and cytochrome P450 and Glutathione S-transferase (GST) expression by sustentacular cells is reduced. Functional levels of GST activity are also reduced. These disruptions are associated with increased olfactory sensory neuron degeneration. Surprisingly, expression of Notch3 is also down-regulated. This suggests the existence of a feedback loop where expression of Notch3 is initially independent of Notch2, but requires Notch2 for maintained expression. While the Notch pathway has previously been shown to be important for promoting gliogenesis during development, this is the first demonstration that the persistent expression of Notch receptors is required for maintaining glial function in adult. 相似文献
6.
7.
Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development 总被引:1,自引:0,他引:1
Sevrioukov EA Burr J Huang EW Assi HH Monserrate JP Purves DC Wu JN Song EJ Brachmann CB 《Genesis (New York, N.Y. : 2000)》2007,45(4):184-193
Many developing tissues require programmed cell death (PCD) for proper formation. In mice and C. elegans, developmental PCD is regulated by the Bcl-2 family of proteins. Two bcl-2 genes are encoded in the Drosophila genome (debcl/dBorg1/Drob-1/dBok and buffy/dBorg2) and previous RNAi-based studies suggested a requirement for these in embryonic development. However, we report here that, despite the fact that many tissues in fruit flies are shaped by PCD, deletion of the bcl-2 genes does not perturb normal development. We investigated whether the fly bcl-2 genes regulate non-apoptotic processes that require caspases, but found these to be bcl-2 gene-independent. However, irradiation of the mutants demonstrates that DNA damage-induced apoptosis, mediated by Reaper, is blocked by buffy and that debcl is required to inhibit buffy. Our results demonstrate that developmental PCD regulation in the fly does not rely upon the Bcl-2 proteins, but that they provide an added layer of protection in the apoptotic response to stress. 相似文献
8.
9.
Ryuuichi D. Itoh Kohdai P. Nakajima Shun Sasaki Hiroki Ishikawa Yusuke Kazama Tomoko Abe Makoto T. Fujiwara 《The Plant journal : for cell and molecular biology》2021,107(1):237-255
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids. 相似文献
10.
Kameswaran Surendran Hila Barak Colin Stomberski Raphael Kopan 《Developmental biology》2010,337(2):386-395
We previously determined that Notch2, and not Notch1, was required for forming proximal nephron segments. The dominance of Notch2 may be conserved in humans, since Notch2 mutations occur in Alagille syndrome (ALGS) 2 patients, which includes renal complications. To test whether mutations in Notch1 could increase the severity of renal complications in ALGS, we inactivated conditional Notch1 and Notch2 alleles in mice using a Six2-GFP::Cre. This BAC transgene is expressed mosaically in renal epithelial progenitors but uniformly in cells exiting the progenitor pool to undergo mesenchymal-to-epithelial transition. Although delaying Notch2 inactivation had a marginal effect on nephron numbers, it created a sensitized background in which the inactivation of Notch1 severely compromised nephron formation, function, and survival. These and additional observations indicate that Notch1 in concert with Notch2 contributes to the morphogenesis of renal vesicles into S-shaped bodies in a RBP-J-dependent manner. A significant implication is that elevating Notch1 activity could improve renal functions in ALGS2 patients. As proof of principle, we determined that conditional inactivation of Mint, an inhibitor of Notch-RBP-J interaction, resulted in a moderate rescue of Notch2 null kidneys, implying that temporal blockage of Notch signaling inhibitors downstream of receptor activation may have therapeutic benefits for ALGS patients. 相似文献
11.
Aya Nomura-Kitabayashi Gregory A. Anderson Gillian Sleep Amna Karabegovic Michelle Letarte Mira C. Puri 《Developmental biology》2009,335(1):66-77
Vascular patterning depends on precisely coordinated timing of endothelial cell differentiation and onset of cardiac function. Endoglin is a transmembrane receptor for members of the TGF-β superfamily that is expressed on endothelial cells from early embryonic gestation to adult life. Heterozygous loss of function mutations in human ENDOGLIN cause Hereditary Hemorrhagic Telangiectasia Type 1, a vascular disorder characterized by arteriovenous malformations that lead to hemorrhage and stroke. Endoglin null mice die in embryogenesis with numerous lesions in the cardiovascular tree including incomplete yolk sac vessel branching and remodeling, vessel dilation, hemorrhage and abnormal cardiac morphogenesis. Since defects in multiple cardiovascular tissues confound interpretations of these observations, we performed in vivo chimeric rescue analysis using Endoglin null embryonic stem cells. We demonstrate that Endoglin is required cell autonomously for endocardial to mesenchymal transition during formation of the endocardial cushions. Endoglin null cells contribute widely to endothelium in chimeric embryos rescued from cardiac development defects, indicating that Endoglin is dispensable for angiogenesis and vascular remodeling in the midgestation embryo, but is required for early patterning of the heart. 相似文献
12.
13.
The human fungal pathogen Candida albicans changes from a budding yeast form to a polarized hyphal form in response to various external conditions. Dimorphic switching of C. albicans has been implicated in the development of pathogenicity. Morphogenic transformation requires polarized cell growth and rearrangement of the cytoskeleton. We previously showed that myosins play key roles in the conversion from the bud to the hyphal form of C. albicans by inhibiting myosin activities with 2,3-butanedione-2-monoxime (BDM), a general myosin ATPase inhibitor. In this study we investigated the function of MYO2 in C. albicans using deletion mutants. The amino acid sequence of CaMYO2 shows 60% identity and 77% homology with MYO2 and 54% identity and 70% homology with MYO4 of budding yeast Saccharomyces cerevisiae, suggesting that CaMYO2 is the only class V myosin in C. albicans. Cells in which both CaMYO2 alleles were deleted were viable, suggesting that MYO2 is nonessential in C. albicans. The proliferation of CaMYO2delta cells, however, was sharply decreased. In addition, CaMYO2delta cells showed defects in assembly and polarized localization of F-actin as well as an inability to induce germ tube formation and hyphal growth. The deletion of CaMYO2 also disrupted the shape and migration of the nucleus. These results strongly suggest that CaMYO2 is essential for polarized growth and hyphal transition in C. albicans. 相似文献
14.
Hayashi T Kokubo H Hartman BH Ray CA Reh TA Bermingham-McDonogh O 《Developmental biology》2008,316(1):87-99
In cochlear development, the Notch signaling pathway is required for both the early prosensory phase and a later lateral inhibition phase. While it is known that Hes genes are important downstream mediators of Notch function in lateral inhibition, it is not known what genes function as mediators of the early prosensory function of Notch. We report that two members of the Hes-related gene family, Hesr1 and Hesr2, are expressed in the developing cochlea at a time and place that makes them excellent candidates as downstream mediators of Notch during prosensory specification. We also show that treatment of cochlear explant cultures at the time of prosensory specification with a small-molecule inhibitor of the Notch pathway mimics the results of conditional Jag1 deletion. This treatment also reduces Hesr1 and Hesr2 expression by as much as 80%. These results support the hypothesis that Hesr1 and Hesr2 are the downstream mediators of the prosensory function of Notch in early cochlear development. 相似文献
15.
Vincent SD Dunn NR Sciammas R Shapiro-Shalef M Davis MM Calame K Bikoff EK Robertson EJ 《Development (Cambridge, England)》2005,132(6):1315-1325
16.
17.
Heide Schatten Calvin Simerly Gerd Maul Gerald Schatten 《Molecular reproduction and development》1989,23(3):309-322
Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 μM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the PI nuclear peripheral antigen, appears on both. DN A synthesis docs not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4–6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 μM taxol nor microfilament inhibition with 10 μM cytochalasin D or 2.2 μg/ml lalrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment doe? not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle. 相似文献
18.
Ushio H Nakao A Supajatura V Miyake K Okumura K Ogawa H 《Biochemical and biophysical research communications》2004,323(2):491-498
To address the role played by MD-2 in mast cell recognition of LPS, we examined bone marrow-derived mast cells (BMMCs) from MD-2 gene-targeted mice. BMMCs from MD-2-/- mice showed impaired cytokine production (TNF-alpha, IL-6, IL-13, and IL-1beta) in response to LPS from Escherichia coli, but not to peptidoglycan (PGN) from Staphylococcus aureus. In a mast cell-dependent acute septic model, MD-2 deficiency of mast cell resulted in significantly higher mortality due to defective neutrophil recruitment and the production of cytokines in the peritoneal cavity, which was similar to mice with TLR4-deficient mast cells. The TLR2-dependent activation of skin mast cells by PGN was not altered by the absence of MD-2 in vivo. Collectively, MD-2 is essential for the recognition of LPS by TLR4 but not for that of PGN by TLR2 of mast cells. 相似文献
19.
20.
Chitin is a minor but essential component of the Saccharomyces cerevisiae cell wall. In wild-type, chitin synthase II is required for the formation of primary septa and chitin synthase III (CSIII) is not essential. However, in chs2 mutants CSIII becomes essential for the formation of aberrant septa. We examined which of two CSIII functions, the formation of a chitin ring at bud emergence or of chitin in the remedial septa, was required for viability. By using cell cycle synchronization in combination with nikkomycin Z, a specific inhibitor of CSIII, we inhibited chitin synthesis in a chs2 mutant, during formation of either the ring or the remedial septa. The results show that only synthesis of the chitin during aberrant septa formation is essential for viability. Thus, the unique function of the chitin ring seems to be maintenance of the integrity of the mother-bud neck, as we recently found, and the importance of chitin in septum closure, both in normal and abnormal situations, is underlined. 相似文献