首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors.  相似文献   

2.
The relative muscarinic anticholinergic actions of phenothiazines and related drugs are thought to regulate the propensity of these agents to elicit extrapyramidal side effects, especially those resembling the symptoms of Parkinson's disease. Pimozide, which closely resembles the butyrophenones in its chemical structure and its potent and selective dopamine receptor blockade, differs from the butyrophenones in its relatively low incidence of extrapyramidal side effects. In assays of the binding of 3H-quinuclidinyl benzilate (QNB) to muscarinic sites, pimozide displays a high affinity for these cholinergic receptors, similar to drugs, such as thioridizine and clozapine, which also have a low incidence of extrapyramidal side effects. This observation supports the notion that muscarinic anticholinergic actions can ameliorate the propensity of a drug to elicit extrapyramidal effects. The structure-activity relationships of chlorpromazine metabolites in binding to muscarinic sites in the brain parallels some of their structure-activity relationships as neuroleptic agents. 7-Hydroxychlorpromazine, which has been proposed as an antischizophrenic drug, binds to the muscarinic receptor with a potency similar to that of chlorpromazine itself, suggesting that the incidence of extrapyramidal side effects of 7-hydroxychlorpromazine might be similar to those of chlorpromazine.  相似文献   

3.
New dialkylaminoacyl phenothiazine derivatives (DAC) were compared with their dialkylaminoalkyl analogues (neuroleptics chlorpromazine, trifluoperazine and fluphenazine) as well as with anti-arrhythmia drugs ethmozine and ethacizine for their receptor-blocking potencies. It was established that DAC are significantly less potent with dopamine alpha 1-adrenergic and H1-histamine receptors of calf and rabbit brain, which can explain the absence of neuroleptic effect of DAC drugs. DAC affinities to muscarinic and alpha-adrenergic receptors of both types are very similar to those of ethmozine and ethacizine. New DAC substance G-512 (chlorpromazine analogue) demonstrated high affinity to M1-muscarinic receptors of rabbit brain cortex (Ki = 4.2 nM) and to M2-muscarinic receptors of the rabbit heart (Ki = 48 nM).  相似文献   

4.
Using radioligand binding assays and post-mortem normal human brain tissue, we obtained equilibrium dissociation constants (K(d)s) for nine new antipsychotic drugs (iloperidone, melperone, olanzapine, ORG 5222, quetiapine, risperidone, sertindole, ziprasidone, and zotepine), one metabolite of a new drug (9-OH-risperidone), and three older antipsychotics (clozapine, haloperidol, and pimozide) at nine different receptors (alpha1-adrenergic, alpha2-adrenergic, dopamine D2, histamine H1, muscarinic, and serotonin 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2C receptors). Iloperidone was the most potent drug at the two adrenergic receptors. ORG 5222 was the most potent drug at dopamine D2 and 5-HT2c receptors, while ziprasidone was the most potent compound at three serotonergic receptors (5-HT1A, 5-HT1D, and 5-HT2A). At the remaining two receptors, olanzapine was the most potent drug at the histamine H1 receptor (Kd=0.087 nM); clozapine at the muscarinic receptor (Kd=9 nM). Certain therapeutic and adverse effects, as well as certain drug interactions can be predicted from a drug's potency for blocking a specific receptor. These data can provide guidelines for the clinician in the choice of antipsychotic drug.  相似文献   

5.
A Fulton  G D Burrows 《Life sciences》1980,26(18):1505-1508
The drug concentrations which inhibited 50% of 3H-haloperidol specific binding (the IC50) by striatal receptors of fluphenazine dihydrochloride, 7-hydroxy fluphenazine, chlorpromazine hydrochloride, 7-hydroxy chlorpromazine, pericyazine, and nomifensine were measured: 2.7 nM, 3.3nM, 6.3nM, 4.7nM, 360nM.Fluphenazine sulphoxide and the glucuronide of 7-hydroxychlorpromazine were inactive in competing for binding sites. The IC50 of fluphenazine dihydrochloride, chlorpromazine, and pericyazine followed in the same ranking order as their daily clinical doses as antipsychotics.  相似文献   

6.
Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and 3H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H2-activity of the novel H2-antagonist HUK 978. The results showed that HUK 978 was a more potent H2-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H1-receptor, the muscarinic receptor and the alpha and beta-adrenergic receptors.  相似文献   

7.
In this study, a novel series of imidazole-containing compounds with dual properties, that is, inhibitory potency at the enzyme histamine N(tau)-methyltransferase (HMT) and antagonist potency at histamine H(3) receptors was designed and synthesized. Pharmacologically, these new hybrid drugs were evaluated in functional assays for their inhibitory potencies at rat kidney HMT and for their antagonist activities on synaptosomes of rat cerebral cortex. For selected compounds, binding affinities at recombinant human histamine H(3) receptors were determined. The first compounds (1-10) of the series proved to be H(3) receptor ligands of high potency at rat synaptosomes or of high binding affinity at human H(3) receptors, respectively, but of only moderate activity as inhibitors of rat kidney HMT. In contrast, aminoquinoline- or tetrahydroacridine-containing derivatives 11-17 also displayed HMT inhibitory potency in the nanomolar concentration range. Preliminary data from molecular modeling investigations showed that the imidazole derivative 15 and the HMT inhibitor quinacrine possess identical binding areas. The most interesting compound (14) is simultaneously a highly potent H(3) receptor ligand (K(i)=4.1nM) and a highly potent HMT inhibitor (IC(50)=24nM), which makes this derivative a valuable pharmacological tool for further development.  相似文献   

8.
Because the dopamine D3 receptor is primarily expressed in regions of the limbic system of brain, it was proposed that it may represent a target for antipsychotic drugs that is free of extrapyramidal side effects. An ex vivo receptor binding technique employing [3H]7-OH-DPAT was used to evaluate in vivo occupancy of dopamine D3 receptors in the rat nucleus accumbens by selective D3 agonist 7-OH-DPAT (7-hydroxy-dipropylaminotetralin) and various antipsychotic drugs. With an ID50 value of 0.07 mg/kg, the selective D3 agonist (+)-7-OH-DPAT had the most potent inhibitory effect on ex vivo binding of [3H]7-OH-DPAT among all drugs tested. Clinical doses of phenothiazine drugs, such as chlorpromazine and levomepromazine, induce binding to D3 receptors in vivo, while atypical antipsychotic drugs, such as clozapine, pimozide, and sulpiride, are very weak in inhibiting ex vivo binding of [3H]7-OH-DPAT, indicating that the role of D3 receptors as targets of antipsychotic drugs free of extrapyramidal side effects may not be important.  相似文献   

9.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

10.
We previously reported that when neostigmine, an inhibitor of acetylcholine esterase, was injected into the third cerebral ventricle, the concentration of hepatic venous plasma glucose was increased via central muscarinic receptors in anesthetized rats. To determine whether brain histamine receptors are involved in cholinergic system transmission with regard to central nervous system (CNS)-mediated glucoregulation, we examined the effects of the H1 receptor antagonist pyrilamine and the H2 receptor antagonist ranitidine on neostigmine-induced hyperglycemia in anesthetized rats. The injection of pyrilamine (5 x 10(-9)-5 x 10(-7) mol) into the third cerebral ventricle suppressed hyperglycemia induced by intraventricular injection of neostigmine (1 x 10(-9) mol) in a dose-dependent manner. Injection of ranitidine (5 x 10(-9)-5 x 10(-7) mol) into the third cerebral ventricle did not suppress the hyperglycemia induced by neostigmine, but enhanced it in a dose-dependent manner. These findings suggest that neostigmine-induced CNS-mediated hyperglycemia is transmitted by not only brain cholinergic muscarinic receptors but also in part by histamine H1 receptors.  相似文献   

11.
We have purified a small, basic protein with high affinity and selectivity for biogenic amine receptors to apparent homogeneity from the venom of Russell's viper (Vipera russelli). This protein, which we designate "vipoxin," has Mr = 13,000, and appears to exist in solution as a single polypeptide chain. It may contain 2 atypical amino acids. Vipoxin inhibits in a dose-dependent manner the binding of 3H-ligands to biogenic amine receptors, with apparent Ki values of 3 nM at alpha 1-adrenergic receptors, 5 nM at alpha 2-adrenergic receptors, 15 nM at dopamine receptors, and 32 nM at serotonin receptors. At concentrations up to 1 microM, vipoxin is inactive at beta-adrenergic, histamine, nicotinic cholinergic, muscarinic cholinergic, adenosine, gamma-aminobutyric acid, benzodiazepine, or opiate receptor binding sites. The effect of vipoxin is essentially irreversible over 20 h at alpha 1- and alpha 2-adrenergic receptors and serotonin receptors and is only slightly reversible at dopamine receptors. Norepinephrine protects alpha-adrenergic receptors from inhibition by vipoxin, while dopamine does not. Vipoxin has no protease activity but does have phospholipase A2 activity, which cannot account for its action on receptors, since receptor binding is assayed in the presence of 1 mM CoSO4 which completely and selectively inhibits the phospholipase activity. Other phospholipases A2 in the same venom lack vipoxin's action on receptors. In physiologic experiments, vipoxin behaves as an agonist at alpha 2-adrenergic receptors in the rat vas deferens and is over an order of magnitude more potent than norepinephrine itself. At alpha 1-adrenergic receptors, it is neither a simple agonist nor an antagonist, but selectively potentiates norepinephrine. Vipoxin may be a useful tool for biogenic amine receptor characterization.  相似文献   

12.
Benztropine (BZT) and its analogues inhibit dopamine uptake and bind with moderate to high affinity to the dopamine transporter (DAT). However, many of these compounds, in contrast to other monoamine uptake inhibitors, lack cocaine-like behavioral effects and fail to potentiate the effects of cocaine. The BZT analogues also exhibit varied binding affinities for muscarinic M(1) and histamine H(1) receptors. In this study, a comparative analysis was conducted of pharmacophoric features with respect to the activities of BZT analogues at the DAT and at the histamine H(1) receptor. The BZT analogues showed a wide range of histamine H(1) receptor (K(i)=16-37,600 nM) and DAT (K(i)=8.5-6370 nM) binding affinities. A stereoselective histamine H(1)-antagonist pharmacophore, using a five-point superimposition of classical antagonists on the template, cyproheptadine, was developed. A series of superimpositions and comparisons were performed with various analogues of BZT. In general, smaller substituents were well tolerated on the aromatic rings of the diphenyl methoxy group for both the DAT and H(1) receptor, however, for the H(1) receptor, substitution at only one of the aromatic rings was preferred. The substituents at the 2- and N-positions of the tropane ring were preferred for DAT, however, these groups seem to overlap receptor essential regions in the histamine H(1) receptor. Molecular models at the DAT and the histamine H(1) receptor provide further insight into the structural requirements for binding affinity and selectivity that can be implemented in future drug design.  相似文献   

13.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

14.
A series of 2-substituted dynorphin A-(1-13) amide (Dyn A-(1-13)NH2) analogues was prepared by solid phase peptide synthesis and evaluated for opioid receptor affinities in radioligand binding assays and for opioid activity in the guinea pig ileum (GPI) assay. Amino acid substitution at the 2 position produced marked differences in both opioid receptor affinities and potency in the GPI assay; Ki values for the analogues in the radioligand binding assays and IC50 values in the GPI assay varied over three to four orders of magnitude. The parent peptide, Dyn A-(1-13)NH2, exhibited the greatest affinity and selectivity for kappa receptors and was the most potent peptide examined in the GPI assay. The most important determinant of opioid receptor selectivity and opioid potency for the synthetic analogues was the stereochemistry of the amino acid at the 2 position. Except for [D-Lys2]Dyn A-(1-13)NH2 in the kappa receptor binding assay, the analogues containing a D-amino acid at position 2 were much more potent in all of the assays than their corresponding isomers containing an L-amino acid at this position. The L-amino acid-substituted analogues generally retained some selectivity for kappa opioid receptors. The more potent derivatives with a D-amino acid in position 2, however, preferentially interacted with mu opioid receptors. Introduction of a positively charged amino acid into the 2 position generally decreased opioid receptor affinities and potency in the GPI assay.  相似文献   

15.
[3H]Fluphenazine was used to label both D-1 and D-2 dopamine receptors in mouse striatal membranes. The D-1 and D-2 specific binding of [3H]fluphenazine was discriminated by the dopamine antagonists SCH-23390 (D-1 selective) and spiperone (D-2 selective). Saturation analyses of these two sites yielded a D-1 receptor density in mouse striatum of 1,400 fmol/mg of protein and a D-2 receptor density of 700 fmol/mg of protein. The affinity of [3H]fluphenazine for the D-2 site was slightly greater than for the D-1 site; the equilibrium dissociation constant (KD) was 0.7 versus 3.2 nM, respectively. Assay conditions are described that reduce nonspecific binding of [3H]fluphenazine to acceptable levels (35% of total binding at 1 nM [3H]fluphenazine). By comparison of displacement curves from a series of dopaminergic and nondopaminergic ligands, the pharmacological specificity of [3H]fluphenazine binding in mouse striatum was demonstrated to be dopaminergic. Only small amounts of dopamine-specific (apomorphine-sensitive) [3H]fluphenazine binding were found in other brain regions. However, chlorpromazine displaced considerable [3H]fluphenazine from all brain regions, including cerebellum, suggesting the presence of a [3H]fluphenazine binding site with a phenothiazine specificity.  相似文献   

16.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

17.
Emerging from an HTS campaign, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Structural moieties of the hit compounds were combined to improve binding affinities which resulted in compound 4 as lead molecule. During the lead optimization due to the versatile modifications of diamino steroid derivatives, several in vitro potent compounds with subnanomolar binding affinities to histamine H3 receptors were found. The unfavorable binding to rat muscarinic receptors was successfully reduced by tuning the basicity. Compound 20 showed significant in vivo activity in the rat dipsogenia model and could serve as a pharmacological tool in the future.  相似文献   

18.
J Baumgold  V I Cohen  R Paek  R C Reba 《Life sciences》1991,48(24):2325-2329
In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, we derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of [3H]-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing m1-m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for m1 receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at m1 receptors, and a 4-fold greater potency at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.  相似文献   

19.
Cholinergic and adrenergic receptors on mouse cardiocytes in vitro   总被引:2,自引:0,他引:2  
The effects of adrenergic and cholinergic receptor agonists and antagonists on single and clustered mouse cardiocytes in culture have been studied. Cardiocytes were obtained from mice, ranging in ages from 9 days in utero to 1 day postpartum, and were grown in culture for 2–14 days. Single isolated cells of every age tested possessed the ability to respond both via a muscarinic cholinergic receptor to the cholinergic agonist, carbamylcholine, and via α- and β-adrenergic receptors to norepinephrine and epinephrine. Thus, cholinergic and adrenergic receptors are simultaneously present on the same cell. Cardiocyte clusters had considerably higher sensitivity to both autonomic agents, but, because of the extensive functional specializations between cells, the localization of functional receptors to specific cells could not be made. [3H]Alprenolol, a potent β-adrenergic receptor antagonist, and [3H]quinuclidinyl benzilate ([3H]QNB), a potent muscarinic cholinergic receptor antagonist, were used to localize β-adrenergic and muscarinic cholinergic receptors by autoradiography. Quantitation of the muscarinic ACh receptor gave ~800 sites/μm2, a value comparable to that for the nicotinic ACh receptor on primary skeletal muscle in culture. Electrophysiological and fine-structural studies confirmed the myocardial nature of these cells.  相似文献   

20.
Homogenates of cricket (Acheta domesticus) central nervous system (CNS) specifically bind the potent muscarinic ligand [3H]-QNB. Binding assay and pharmacologic data indicate that the cricket CNS contains a high density of muscarinic cholinergic binding sites. These sites appear to be a unique class of invertebrate cholinergic receptor with properties distinct from those of previously described nicotinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号