首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
For the reason that adult Sertoli cell specific connexin 43 knockout (SCCx43KO) mice show arrested spermatogenesis at spermatogonial level or Sertoli cell only tubules and significantly reduced germ cell (GC) numbers, the aims of the present study were (1) to characterize the remaining GC population and (2) to elucidate possible mechanisms of their fading. Apoptosis was analyzed in both, KO and wild type (WT) male littermates during postnatal development and in adulthood using TUNEL. Although GC numbers were significantly reduced in KO at 2 and 8 days postpartum (dpp) when compared to WT, no differences were found concerning apoptotic incidence between genotypes. From 10 dpp, the substantial GC deficiency became more obvious. However, significantly higher apoptotic GC numbers were seen in WT during this period, possibly related to the first wave of spermatogenesis, a known phenomenon in normal pubertal testes associated with increased apoptosis. Characterization of residual spermatogonia in postnatal to adult KO and WT mice was performed by immunohistochemical reaction against VASA (marker of GCs in general), Lin28 and Fox01 (markers for undifferentiated spermatogonia) and Stra8 (marker for differentiating spermatogonia and early spermatocytes). During puberty, the GC component in SCCx43KO mice consisted likely of undifferentiated spermatogonia, few differentiating spermatogonia and very few early spermatocytes, which seemed to be rapidly cleared by apoptosis. In adult KOs, spermatogenesis was arrested at the level of undifferentiated spermatogonia. Overall, our data indicate that Cx43 gap junctions in SCs influence male GC development and differentiation rather than their survival.  相似文献   

3.

Background

Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro.

Methods and Findings

To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene.

Conclusion

VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates.  相似文献   

4.
Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.  相似文献   

5.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

6.
7.
Yu Y  Wei N  Stanford C  Schmidt T  Hong L 《Steroids》2012,77(1-2):132-137
Although exogenous glucocorticoids (GC) play a role in the regulation of bone marrow mesenchymal stem/stromal cells (MSCs) proliferation and differentiation, the function of endogenous GC is not well understood. The purpose of this study was to investigate the effect of the blockage of endogenous GC using RU486, an antagonist of the glucocorticoid receptor, on the in vitro proliferation and differentiation capabilities of human MSCs. We quantitatively measured cell proliferation of human MSCs after treatment with increasing concentrations of RU486. We also evaluated multiple MSC differentiation capabilities, as well as the expression of stemness and senescence genes after proliferation of these human cells in vitro in the presence of RU486 at 10(-8)M. It was observed that RU486 treatment significantly increases the proliferation of human MSCs, although the optimal dose of RU486 for this increase in proliferation differs depending on the gender of the MSC donor. This improvement in MSC proliferation with RU486 treatment was higher in MSCs from male donors than that from females. No effect of RU486 on MSC proliferation was observed in a steroid-free medium. RU486 pretreatment significantly increased the expression of mRNA for alkaline phosphatase in human MSCs and the mRNA expression of osteocalcin of these cells up-regulated earlier after their exposure to osteogenic differentiation medium. Although no statistical significance in terms of chondrogenic differentiation markers was detected, mRNA expression for aggrecan and collagen type 2 were higher in a majority of the RU486-pretreated donor MSCs than their untreated controls. No significant difference in terms of MSC adipogenic differentiation capabilities were observed after RU486 treatment. RU486 treatment up-regulated the expressions of FGF-2 and Sox-11 in human MSCs. These results indicate that blockage of endogenous GCs may be developed as a novel approach to effectively improve the proliferation and osteochondral differentiation capabilities of human MSCs for potential clinical applications. Additional studies will be required to determine the potential long-term effects of RU486 treatment on these bone marrow cells.  相似文献   

8.
Mesenchymal stem cells (MSCs) have the ability to differentiate into a variety of lineages and to renew themselves without malignant changes, and thus hold potential for many clinical applications. However, it has not been well characterized how different the properties of MSCs are depending on the tissue source in which they resided. We previously reported a novel technique for the prospective MSC isolation from bone marrow, and revealed that a combination of cell surface markers (LNGFR and THY-1) allows the isolation of highly enriched MSC populations. In this study, we isolated LNGFR+ THY-1 + MSCs from synovium using flow cytometry. The results show that the synovium tissue contained a significantly larger percentage of LNGFR + THY-1 + MSCs. We examined the colony formation and differentiation abilities of bone marrow-derived MSCs (BM-MSCs) and synovium-derived MSCs (SYN-MSCs) isolated from the same patients. Both types of MSCs exhibited a marked propensity to differentiate into specific lineages. BM-MSCs were preferentially differentiated into bone, while in the SYN-MSC culture, enhanced adipogenic and chondrogenic differentiation was observed. These data suggest that the tissue from which MSCs are isolated should be tailored according to their intended clinical therapeutic application.  相似文献   

9.
10.
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.  相似文献   

11.
Tsui S  Dai T  Roettger S  Schempp W  Salido EC  Yen PH 《Genomics》2000,65(3):266-273
The human DAZ (deleted in azoospermia) gene family on the Y chromosome and an autosomal DAZ-like gene, DAZL1, encode RNA-binding proteins that are expressed exclusively in germ cells. Their role in spermatogenesis is supported by their homology with a Drosophila male infertility gene boule and sterility of Daz11 knock-out mice. While all mammals contain a DAZL1 homologue on their autosomes, DAZ homologues are present only on the Y chromosomes of great apes and Old World monkeys. The DAZ and DAZL1 proteins differ in the copy numbers of a DAZ repeat and the C-terminal sequences. We studied the interaction of DAZ and DAZL1 with other proteins as an approach to investigate functional similarity between these two proteins. Using DAZ as bait in a yeast two-hybrid system, we isolated two DAZAP (DAZ-associated protein) genes. DAZAP1 encodes a novel RNA-binding protein that is expressed most abundantly in the testis, and DAZAP2 encodes a ubiquitously expressed protein with no recognizable functional motif. DAZAP1 and DAZAP2 bind similarly to both DAZ and DAZL1 through the DAZ repeats. The DAZAP genes were mapped to chromosomal regions 19p13.3 and 2q33-q34, respectively, where no genetic diseases affecting spermatogenesis are known to map.  相似文献   

12.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

13.
Vasa homolog genes in mammalian germ cell development   总被引:12,自引:0,他引:12  
Many vasa homologue genes to Drosophila vasa have been isolated in various animal species. They provide specific molecular probes to analyze the establishment and the differentiation of germ cell lineage. In mammals, the expression of VASA protein becomes detectable in PGCs at the late migrating stage. Interestingly, during spermatogenesis the intracellular localization of VASA protein is closely associated with the chromatoid body.  相似文献   

14.
Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and [Ca2+]i between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.  相似文献   

15.
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.  相似文献   

16.
We investigate the effects mediated by glucocorticoid (GC) receptor (GR) blockage by using RU486, a GR antagonist and GR short interfering RNA (GR siRNA) on the proliferative and differentiation capabilities of human bone marrow mesenchymal stromal/stem cells (MSCs) and on their senescence and antioxidant levels during extended in vitro culture. Treatment with either RU486 or GR siRNA for a 7-day period significantly increased the proliferation of MSCs and their osteogenic capabilities, as reflected by an increase in alkaline phosphatase (ALP) levels after differentiation. Following 4 weeks of treatment, MSCs improved or maintained their proliferation rates, whereas control MSCs exhibited decreased proliferation. Although all MSCs exhibited reduced osteogenic potential after 4 weeks of in vitro culture, the MSCs treated with GR inhibitors showed higher ALP levels than untreated MSCs on being subjected to osteogenic differentiation. Such treatment also significantly down-regulated the adipogenic capabilities of MSCs. Telomere lengths and the activities of telomerase and superoxide dismutase of MSCs treated with either RU486 or GR siRNA appeared to be higher than those detected in controls. These results demonstrate that the blockage of effects mediated by the GCs normally found in fetal bovine serum might postpone senescence of these cells by up-regulating their antioxidant levels. Our data suggest that the blocking of the effects mediated by GCs might extend the lifespan of endogenous MSCs in patients who have elevated GC levels as a consequence of advancing age or estrogen depletion.  相似文献   

17.
IntroductionIn China Herba Epimedii is one of the most common herbs that could be prescribed for treating osteoporosis. It is known to increase the overall mineral content, therefore, to promote bone formation and to increase lumbar bone mineral density (BMD). The present study was aimed at investigating the effect of flavonoids of Herba Epimedii (HEF) on osteogenesis in human MSCs.MethodsThe human bone marrow-derived MSCs (BM-MSCs) were isolated and their osteogenic differentiation was evaluated by their alkaline phosphatase (ALP) activities and level of mineralization. After treating with total flavonoids during osteogenic differentiation process, differential mRNA expression was examined by RT-PCR.ResultsThe total time needed for osteogenic differentiation of BM-MSCs was significantly shortened by adding HEF. Up-regulation of mRNA expression by HEF was observed for several marker genes and osteogenic regulators. HEF was also found to inhibit osteoclastogenesis of MSCs by enhancing the ratio OPG/RANKL.ConclusionsOur study demonstrated that the HEF could improve osteogenic differentiation and inhibit the osteoclast differentiation of BM-MSCs concurrently.  相似文献   

18.
19.

Background  

Germ cells arise from a small group of cells that express markers of pluripotency including OCT4. In humans formation of gonadal compartments (cords in testis, nests in ovary) takes place during the 1st trimester (6–8 weeks gestation). In the 2nd trimester germ cells can enter meiotic prophase in females whereas in males this does not occur until puberty. We have used qRTPCR, Westerns and immunohistochemical profiling to determine which of the germ cell subtypes in the human fetal gonads express OCT4, DAZL and VASA, as these have been shown to play an essential role in germ cell maturation in mice.  相似文献   

20.
NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icre transgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63 genes'' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号