首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca(2+) supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2?d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca(2+) concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca(2+) or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa.  相似文献   

3.
The cadherins are a family of cell membrane proteins that mediate calcium-dependent cell-cell adhesion. E-cadherin is required for the formation, differentiation, polarization and stratification of epithelia; P-cadherin is also expressed on many epithelia. We report here the first study of cadherin expression in immortalized human gingival epithelial cells (IHGK) and examine the role of cadherins in growth regulation of these cells. We found that the IHGK cells are similar to normal gingival epithelial cells in their cadherin expression and density-dependent inhibition of growth.

The IHGK cells proliferate more rapidly at low calcium concentration (0.15 mM) than at physiological concentrations of calcium (1.8 mM) and magnesium (0.65 mM; Ca/Mg medium) suggesting that calcium is required for density-dependent regulation of proliferation. To evaluate the possibility that cadherin function is required for contact inhibition in these cells, we grew them in Ca/Mg medium in the presence of adhesion-blocking anti-cadherin monoclonal antibodies. At anti-E-cadherin concentrations sufficient to disrupt cell-cell adhesion, the proliferation of the IHGK cells was similar to that observed in medium containing 0.2 mM EDTA. Anti-P-cadherin had a much weaker effect on cell proliferation than anti-E-cadherin, and cells grown in medium containing both antibodies grew at intermediate rates. The increased proliferation of the IHGK cells in either low calcium medium or Ca/Mg medium containing adhesion-blocking anti-cadherin antibodies suggests that cadherin-medi-ated adhesion is required for density-dependent regulation of growth of these cells.  相似文献   

4.
5.
Calcium supplementation decreases the incidence of colon cancer in animal models and may prevent colon cancer in man. Potential mechanisms include binding of mitogens and direct effects of calcium on colonic epithelial cells. In this study, the effects of extracellular calcium on epithelial cell growth and differentiation were studied in three colon carcinoma and two colonic adenoma cell lines. The characteristics studied included morphology, cell cycle kinetics, [Ca2+]IC (intracellular calcium concentration), proliferation, and expression of differentiation markers such as carcinoembryonic antigen (CEA) and alkaline phosphatase (AP). Sodium butyrate (NaB) and 1,25-dihydroxyvitamin D3 were used as controls in the latter three assays as these two agents are known differentiating agents. Alteration of [Ca+2]EC (extracellular calcium concentration) did not affect carcinoembryonic antigen (CEA) or alkaline phosphatase (AP) expression. NaB enhanced the expression of AP three-fold and CEA five-fold. This effect was augmented by increasing [Ca2+]EC. The exposure of cells to 1,25-(OH)2-Vitamin D3 increased CEA but not AP. [Ca2+]IC increased in response to 1,25-(OH)2-vitamin D3 and NaB but not with variation in [Ca2+]EC. Increased [Ca2+]EC inhibited proliferation of well-differentiated cells, but had no effect on poorly-differentiated cells. Morphological studies showed that extracellular calcium was necessary for normal cell—cell interactions. These studies have demonstrated direct effects of calcium on colonic epithelial cells which may contribute to the protective effects of dietary calcium against colon cancer. Loss of responsivess to the antiprotective effects of [Ca2+]EC with de-differentiation suggests that calcium supplementation may be most beneficial prior to the development of neoplastic changes in colonic epithelium.  相似文献   

6.

Background

Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer.

Key Results

In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27Kip1 in presence of CaSR agonists.

Conclusion

Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors.  相似文献   

7.
The establishment and maintenance of epithelial polarity are crucial for tissue organization and function in mammals. Epithelial cadherin (E-cadherin) is expressed in epithelial cell membrane and is important for cell-cell adhesion, intercellular junctions formation, as well as epithelial cell polarization. We report herein that CAS (CAS/CSE 1), the human cellular apoptosis susceptibility protein, interacts with E-cadherin and stimulates polarization of HT-29 human colon epithelial cells. CAS binds with E-cadherin but not with beta-catenin in the immunoprecipitation assays. Interaction of CAS with E-cadherin enhances the formation of E-cadherin/beta-catenin cell-cell adhesive complex. Electron microscopic study demonstrated that CAS overexpression in cells stimulates intercellular junction complex formation. The disorganization of cellular cytoskeleton by cytochalasin D, colchicine, or acrylamide treatment disrupts CAS-stimulated HT-29 cell polarization. CAS-mediated HT-29 cell polarity is also inhibited by antisense E-cadherin DNA expression. Our results indicate that CAS cooperates with E-cadherin and plays a role in the establishment of epithelial cell polarity.  相似文献   

8.
Epithelial cells in the colon are arranged in cylindrical structures called crypts in which cellular proliferation and migration are tightly regulated. We hypothesized that the proliferation patterns of cells may determine the stability of crypts as well as the rates of somatic evolution towards colorectal tumorigenesis. Here, we propose a linear process model of colonic epithelial cells that explicitly takes into account the proliferation kinetics of cells as a function of cell position within the crypt. Our results indicate that proliferation kinetics has significant influence on the speed of cell movement, kinetics of mutation propagation, and sensitivity of the system to selective effects of mutated cells. We found that, of all proliferation curves tested, those with mitotic activities concentrated near the stem cell, including the actual proliferation kinetics determined in in vivo labeling experiments, have a greater ability of delaying the rate of mutation accumulation in colonic stem cells compared to hypothetical proliferation curves with mitotic activities focused near the top of the crypt column. Our model can be used to investigate the dynamics of proliferation and mutation accumulation in spatially arranged tissues.  相似文献   

9.
Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell's sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.  相似文献   

10.
11.
The influence of experimental bypass on the epithelial cell kinetics in the rat descending colon was studied. It was found that the number of cells per crypt was markedly reduced at 6 weeks after bypass. The percentage of labelled crypt cells, 1 h after 3HTdR, and the distribution of labelled cells in the crypt was normal. Also the life span of the epithelial cells was the same in control and bypassed colon. The response of crypt cell proliferation to ischaemia-induced cell loss in the bypassed descending colon was similar to the one previously described for normal descending colon. This indicates that the absence of the normal luminal contents does not result in a different response of colonic crypts to induced cell loss. Furthermore, it was found that the number of cells per crypt and the proliferative activity did not change in the transverse colon after temporary ischaemia of the bypassed descending colon. This indicates that the increase in crypt cell proliferation after ischaemia-induced cell loss is a local response.  相似文献   

12.
The processes of cell proliferation, lineage allocation and differentiation occur continuously and rapidly along the crypt-to-villus axis of the small intestine and the crypt-to-surface epithelial cuff axis of the colon. The four principal epithelial cell lineages in the gut are derived from a multipotent stem cell. Current evidence suggests that each small intestinal and colonic crypt contains a single active stem cell. The biological properties of these stem cells can be inferred from the properties of their amplified, spatially constrained, descendants. Recent studies in transgenic mice have provided insights about how axial pattern formation is maintained in this perpetually renewing epithelium.  相似文献   

13.
The generation of myofibroblasts via epithelial-mesenchymal transition (EMT), a process through which epithelial cells lose their polarity and become motile mesenchymal cells, is a proposed contributory factor in fibrosis of a number of organs. Currently, it remains unclear to what extent epithelia of the upper airways and large intestine are susceptible to this process. Herein, we investigated the ability of model cell lines of alveolar (A549), bronchial (Calu-3) and colonic (Caco-2) epithelial cells to undergo EMT when challenged with transforming growth factor-β1 (TGF-β1) and other pro-inflammatory cytokines. Western blot and immunofluorescence microscopy demonstrated that A549 cells readily underwent EMT, as evidenced by a spindle-like morphology, increase in the mesenchymal marker, vimentin, and down-regulation of E-cadherin, an epithelial marker. In contrast, neither Calu-3 nor Caco-2 cells exhibited morphological changes nor alterations in marker expression associated with EMT. Moreover, whilst stimulation of A549 cells enhanced migration and reduced their proliferative capacity, no such effect was observed in epithelial cell lines of the bronchus or colon. In addition, concomitant treatment of A549 cells with telmisartan, an angiotensin II receptor antagonist with antifibrotic properties, was found to reduce cytokine-induced collagen I production and cell migration, although expression levels of vimentin and E-cadherin remained unaltered. Mechanistically, telmisartan failed to inhibit phosphorylation of Smad2/3. Together, these results, using representative in vitro models of the alveolus, bronchus and colon, tentatively suggest that epithelial cell plasticity and susceptibility to EMT may differ depending on its tissue origin. Furthermore, our investigations point to the beneficial effect of telmisartan in partial abrogation of alveolar EMT.  相似文献   

14.
The purpose of this study was to compare each of the 14 naturally occurring lanthanoid metal ions for ability to stimulate pro-fibrotic responses in human dermal fibroblasts. When fibroblasts were exposed to individual lanthanoids over the concentration range of 1-100?μM, increased proliferation was observed with each of the agents as compared with control cells that were already proliferating rapidly in a growth factor-enriched culture medium. Dose-response differences were observed among the individual metal ions. Matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 levels were also increased in response to lanthanoid exposure but type I procollagen production was not. A dose-response relationship between induction of proliferation and increased MMP-1 was observed. Non-lanthanoid transition metal ions (aluminum, copper, cobalt, iron, magnesium, manganese, nickel, and zinc) were examined in the same assays; there was little stimulation with any of these metals. When epidermal keratinocytes were examined in place of dermal fibroblasts, there was no growth stimulation with any of the lanthanoids. Several of the lanthanoid metals inhibited keratinocyte proliferation at higher concentrations (50-100?μM).  相似文献   

15.
Ammonia, produced by bacterial degradation of unabsorbed and endogenous nitrogenous compounds, is found to be present at millimolar concentrations in the colon lumen. From in vivo animal experiments, this metabolite has been shown to alter colonic epithelial cell morphology and to increase compensatory cell proliferation when present in excess. In this in vitro study, using the human colon adenocarcinoma HT-29 Glc(-/+) cell line treated with increasing doses of NH(4)Cl, we found that 20 mM NH(4)Cl, a concentration close to that found in the large intestine lumen, was able to increase the volume of vacuolar lysosomes and to repress HT-29 Glc(-/+) cell proliferation. This growth-inhibitory effect was not correlated with decrease of cell viability, with modification of cell differentiation and change of the cell distribution in the different cell cycle phases, thus indicating a proportional slowdown in all cell cycle phases. In contrast to what is found in healthy colonocytes, ammonia was not metabolized by HT-29 cells into carbamoyl-phosphate (carbamoyl-P) and citrulline, indicating that ammonia was likely acting on cells by itself. This agent was shown to markedly reduce cellular ornithine decarboxylase (ODC) activity resulting in a threefold decrease in the capacity of HT-29 cells to synthetize polyamines, these latter metabolites being strictly necessary for cell growth. The unexpected finding that ammonia is acting as an antimitotic agent against tumoral HT-29 colonic cells may be related to the inability of these cells to metabolize this compound.  相似文献   

16.
目的检测γ-氨基丁酸(gamma-aminobutyric acid,GABA)和谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)在大鼠降结肠上皮的表达及分布特征,并探讨GABA与上皮细胞分化增殖的关系。方法用免疫荧光及激光共聚焦显微扫描技术,检测GABA、GAD65及GAD67在大鼠降结肠上皮中的表达,并以麦芽凝聚素组织化学染色与免疫荧光结合的双重染色显示GABA和GAD65表达细胞的分布特征。同时,用RT-PCR方法检测GAD mRNA的表达。此外,用3H-胸腺嘧啶放射自显影及增殖细胞核抗原(PCNA)免疫组化方法显示降结肠上皮的增殖带。结果RT-PCR显示降结肠粘膜中GAD65及GAD67mRNA均为阳性。GABA及GAD65免疫反应阳性细胞主要分布在降结肠的腔面和隐窝的上1/3上皮细胞的胞浆,而GAD67阳性细胞仅分布腔面,此外,GABA及GAD65阳性染色也见于黏膜固有层。双重染色显示杯状细胞中GABA及GAD65均为阴性3。H-胸腺嘧啶及PCNA标记阳性细胞主要在隐窝的中下段。结论GABA及GAD65分布在大鼠降结肠上皮的成熟带及功能带,GABA系统可能参与上皮细胞的分化与增殖的调节。  相似文献   

17.
Wu YC  Wang XJ  Yu L  Chan FK  Cheng AS  Yu J  Sung JJ  Wu WK  Cho CH 《PloS one》2012,7(5):e37572
Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.  相似文献   

18.
Calcium mobilization from the endoplasmic reticulum (ER) into the cytosol is a key component of several signaling networks controlling tumor cell growth, differentiation, or apoptosis. Sarco/endoplasmic reticulum calcium transport ATPases (SERCA-type calcium pumps), enzymes that accumulate calcium in the ER, play an important role in these phenomena. We report that SERCA3 expression is significantly reduced or lost in colon carcinomas when compared with normal colonic epithelial cells, which express this enzyme at a high level. To study the involvement of SERCA enzymes in differentiation, in this work differentiation of colon and gastric cancer cell lines was initiated, and the change in the expression of SERCA isoenzymes as well as intracellular calcium levels were investigated. Treatment of the tumor cells with butyrate or other established differentiation inducing agents resulted in a marked and specific induction of the expression of SERCA3, whereas the expression of the ubiquitous SERCA2 enzymes did not change significantly or was reduced. A similar marked increase in SERCA3 expression was found during spontaneous differentiation of post-confluent Caco-2 cells, and this closely correlated with the induction of other known markers of differentiation. Analysis of the expression of the SERCA3 alternative splice isoforms revealed induction of all three known iso-SERCA3 variants (3a, 3b, and 3c). Butyrate treatment of the KATO-III gastric cancer cells led to higher resting cytosolic calcium concentrations and, in accordance with the lower calcium affinity of SERCA3, to diminished ER calcium content. These data taken together indicate a defect in SERCA3 expression in colon cancers as compared with normal colonic epithelium, show that the calcium homeostasis of the endoplasmic reticulum may be remodeled during cellular differentiation, and indicate that SERCA3 constitutes an interesting new differentiation marker that may prove useful for the analysis of the phenotype of gastrointestinal adenocarcinomas.  相似文献   

19.
E-cadherin is a well characterized adhesion molecule that plays a major role in epithelial cell adhesion. Based on findings that expression of E-cadherin is frequently lost in human epithelial cancers, it has been implicated as a tumor suppressor in carcinogenesis of most human epithelial cancers. However, in ovarian cancer development, our data from the current study showed that E-cadherin expression is uniquely elevated in 86.5% of benign, borderline, and malignant ovarian carcinomas irrespective of the degree of differentiation, whereas normal ovarian samples do not express E-cadherin. Thus, we hypothesize that E-cadherin may play a distinct role in the development of ovarian epithelial cancers. Using an E-cadherin-expressing ovarian cancer cell line OVCAR-3, we have demonstrated for the first time that the establishment of E-cadherin mediated cell-cell adhesions leads to the activation of Akt and MAPK. Akt activation is mediated through the activation of phosphatidylinositol 3 kinase, and both Akt and MAPK activation are mediated by an E-cadherin adhesion-induced ligand-independent activation of epidermal growth factor receptor. We have also demonstrated that suppression of E-cadherin function leads to retarded cell proliferation and reduced viability. We therefore suggest that the concurrent formation of E-cadherin adhesion and activation of downstream proliferation signals may enhance the proliferation and survival of ovarian cancer cells. Our data partly explain why E-cadherin is always expressed during ovarian tumor development and progression.  相似文献   

20.
Only one study previously mentioned the involvement of colon during Taenia taeniaeformis larvae infection in rats with inconsistent occurrence of lesions. Present study aimed to determine the consistency of histopathologic changes in colonic epithelia, and the proliferation of mucosal cells through BrdU and PCNA immunohistochemistry. Results demonstrated that crypt hyperplasia of the colon was found in all infected rats, although variable in degree even in a single tissue section. Cystic cavities were frequently seen in severely hyperplastic mucosa. Proliferative zone lengths were significantly increased and PCNA positive cells were observed throughout the colonic crypt lengths at 9 but not at 6 weeks post infection. Cell proliferation involving the major types of cells in the epithelial colon was also increased in infected rats at 9 weeks post infection, with labeling indices significantly greater than the control rats throughout the BrdU time course labeling. Findings suggested that massive increases in epithelial cells and depth of colonic crypts were due to a remarkable increase in cell proliferation. The study concluded that enteropathy in the colon during T. taeniaeformis infection could be consistently observed in heavily infected rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号