首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The interactions of lanthanide metals and dinitrophenyl spin-label haptens with the Fv fragment of the mouse myeloma protein MOPC 315 were investigated by the techniques of fluorescence, e.s.r. (electron spin resonance) and high-resolution n.m.r. (nuclear magnetic resonance). 2. The protein fluorescence of Fv fragment at 340nm is quenched by the haptens (fluorescence enhancement, epsilon=0.15) and enhanced by Gd(III) (epsilon=1.14) and other lanthanides. The binding of the haptens studied here is insensitive to pH in the range 5.5-7.0 (dissociation constant KH=0.3-1.0 muM) and shows 1:1 stoicheiometry. The binding of Gd(III) also shows 1:1 stoicheiometry, but is pH-dependent; the binding constant (KM) varies from 10 muM at pH7.0 to 700 muM at pH4.8. La(III) binding is less sensitive to pH. The pH-dependences of the metal-binding constants imply that a group in the protein with pKa greater than or equal to 6.2 is involved in the binding, and probably also other groups with lower pKa values. 3. The apparent binding of the haptens is weakened about 20-fold by Gd(III), and vice versa. An equilibrium scheme involving a ternary complex with an interaction between the two binding sites is derived in Appendix I to explain the experimental results at two pH values. 4. Time-dependent fluorescence changes are observed in the presence of Gd(III) at pH5.5. A two-state kinetic scheme involving a 'slow' conformational change in the Fv fragment is derived in Appendix II to explain this time-dependence. This scheme is consistent with the antagonistic equilibrium behaviour. 5. The e.s.r. changes in the spin-label haptens on binding to Fv fragment and on the subsequent addition of lanthanides are consistent with the binding scheme for haptens and lanthanides proposed from the fluorescence studies. A difference between the limiting quenching of the e.s.r. signal from the bound haptens in the presence of saturating concentrations of Gd(III) and La(III) is attributed to dipolar interactions between bound Gd(III) and the nitroxide moiety of the bound hapten. The residual quenching with Gd(III) allows an estimate of 1.2nm to be made for the distance between the two paramagnetic centres. 6. The 270 MHz proton difference spectrum of the Fv fragment resulting from the addition of La(III) suggests that any metal-induced conformational changes are small and involve relatively few amino acid residues on the Fv fragment...  相似文献   

2.
1. A series of Dnp (dinitrophenyl) nitroxide spin labels was used to map the dimensions of the combining site of the Dnp-binding immunoglobulin A myeloma protein MOPC 315. The method compares the observed e.s.r. (electron-spin-resonance) hyperfine splittings with those calculated on the basis of different postulated motions for the spin label. The analysis is complicated by the sensitivity of the e.s.r. hyperfine splitting to the overall ;tumbling' time of the antibody-hapten complex and the polarity of the spin-label's environment. When these effects are considered quantitatively, it is then possible to determine the degree of mobility of each hapten which is allowed by the shape of the combining site. 2. The dinitrophenyl ring is rigidly held, and the depth of the site is 1.1-1.2nm and has lateral dimensions at the entrance to the site >/=0.6nmx0.9nm. The analysis of the results for spin-labelled haptens with chiral centres allows these lateral dimensions to be refined to 0.8nm and 1.1nm, and it is shown that the site is asymmetric with respect to the plane of the dinitrophenyl ring. 3. A polarity profile of the combining site was also obtained and a positively charged amino acid residue, possibly arginine-95(L) (light chain), was located at the entrance to the site. 4. The binding of Gd(III) to the antibody-hapten complexes results in quenching of the e.s.r. signal of the nitroxide. By using La(III) as a control, the paramagnetic contribution to the quenching is measured. 5. Analysis of the differential quenchings of the enantiomers of two five-membered nitroxide ring spin labels gives two possible locations of the metal-binding site. One of these is equidistant (0.7nm) from each of the three dinitrophenyl aromatic protons, and nuclear-magnetic-resonance relaxation studies, at 270MHz, on solutions of dinitrobenzene, Gd(III) and the Fv fragment (variable region of heavy and light chain) from protein MOPC 315 support this location for the metal site. 6. The e.s.r. and metal-binding data were then compared with the results of a model of the combining site constructed on the basis of framework invariance in immunoglobulins [Padlan, Davies, Pecht, Givol & Wright (1976) Cold Spring Harbor Symp. Quant. Biol.41, in the press]. The overall agreement is very good. Assignments of possible chelating groups for the metal can be made.  相似文献   

3.
The mouse immunoglobulin A myeloma proteins MOPC 315, MOPC 460 and XRPC 25 all possess dinitrophenyl (Dnp)-binding activity. Differences in specificities were shown by measuring the affinities of a variety of haptens. By using a series of Dnp-spin-labelled haptens, the dimensions of the binding sites of the three myeloma proteins were compared by the method described for protein MOPC 315 [Sutton, Gettins, Givol, Marsh, Wain-Hobson, Willan & Dwek (1977) Biochem. J.165, 177-197]. The dinitrophenyl ring is rigidly held in all three sites. The depths of the sites are all 1.1-1.2nm, but there are differences in the lateral dimensions at the entrance to the sites. For protein XRPC 25 these dimensions are 0.75nmx0.8nm, which may be compared with 0.85nmx1.1nm for protein MOPC 315 and >/=1.0nmx1.1nm for protein MOPC 460. The site in protein MOPC 460 is more symmetrical with respect to the plane of the dinitrophenyl ring than in either of the other two myeloma proteins and also allows greater penetration of solvent. In protein XRPC 25 a positively charged residue was located at the entrance to the site, similarly positioned to that reported for protein MOPC 315 [Sutton, Gettins, Givol, Marsh, Wain-Hobson, Willan & Dwek (1977) Biochem.J.165, 177-197]. All three proteins possess lanthanide-binding sites, but only in protein MOPC 315 is there antagonism between lanthanide and hapten binding. However, the effects of the diamagnetic La(III) on the electron-spin-resonance spectra of bound Dnp spin labels in both proteins MOPC 460 and XRPC 25 suggest an interaction between the two sites. Comparison of this effect with that caused by the addition of the paramagnetic Gd(III) enables the distance between the lanthanide- and hapten-binding sites to be calculated. In both proteins MOPC 460 and MOPC 315 the metal site is approx. 1.0nm from the nitroxide moiety of the spin-labelled hapten, but in protein XRPC 25 this distance is at least 2.0nm.  相似文献   

4.
The pKa values of the three histidine residues in the Fv fragment (variable region of the heavy and light chains) of the mouse myeloma protein MOPC 315, measured by high resolution n.m.r. (nuclear magnetic resonance), are 5.9, 6.9 and 8.2. The perturbation of the pKa of one of the histidines (pKa 6.9) on the addition of hapten and the narrow linewidth of its proton resonances suggests that it is at the edge of the combining site. References to the model of the Fv fragment [Padlan, Davies, Pecht, Givol & Wright (1976) Cold Spring Harbor Symp. Quant. Biol. 41, in the press] allows assignment of the three histidine residues, histidine-102H, histidine-97L and histidine-44L. The determination of the pKa of the phosphorus group, by 31P n.m.r., of a homologous series of Dnp- and Tnp- (di- and tri-nitrophenyl) haptens has located a positively charged residue. Molecular-model studies on the conformations of these haptens show that the residue is at the edge of the site. The model suggests that the positively charged residue is either arginine-95L or lysine-52H.  相似文献   

5.
Magnetic-resonance techniques are used to refine the model of the combining site of the Fv fragment of the dinitrophenyl-binding mouse myeloma protein MOPC 315 constructed by Padlan, Davies, Pecht, Givol & Wright (1976) (Cold Spring Harbor Symp. Quant. Biol. 41, in the press). Light-absorption studies indicate a dinitrophenyl–tryptophan interaction in the Fv fragment of the type occurring in free solution. The Dnp-aspartate–tryptophan complex is therefore used as a starting point for the n.m.r. (nuclear-magnetic-resonance) analysis of the dinitrophenyl–Fv fragment interaction. Ring-current calculations are used to determine the geometry of the complex. The specificity of complex-formation between dinitrophenyl and tryptophan is confirmed by the lack of ring-current shifts of the dinitrophenyl resonances when tryptophan is replaced by any other aromatic amino acid. Proton n.m.r. difference spectra (at 270MHz), resulting from the addition of a variety of haptens to the Fv fragment, show that the combining site is highly aromatic in nature. Calculations on the basis of ring-current shifts define the geometry of the combining site, which involves a dinitrophenyl ring in van der Waals contact with four aromatic amino acid residues on the protein. The observation of a nuclear Overhauser effect on the H(3) resonance of the dinitrophenyl ring provides additional constraints on the relative geometry of the H(3) proton and an aromatic amino acid residue on the Fv fragment. The specificity of the Fv fragment for dinitrophenyl ligands arises from a stacking interaction of the dinitrophenyl ring with tryptophan-93L, in an `aromatic box' of essentially tryptophan-93L, phenylalanine-34H and tyrosine-34L; asparagine-36L and tyrosine-34L also contribute by forming hydrogen bonds with the nitro groups on the dinitrophenyl ring. The n.m.r. results also confirm that the antibody–hapten reaction may be visualized as a single encounter step. An Appendix shows the method of calculation of ring currents for the four aromatic amino acids and their use in calculating structures.  相似文献   

6.
Two series of dinitrophenyl haptens, in which chlorine replaces one or both nitro groups, were used to investigate, by a combination of high-resolution 1H n.m.r. and fluorescence quenching, the presence of groups in the combining site of protein MOPC 315, which form hydrogen bonds to the aromatic-ring substituents of the hapten. The large differences in binding constants on successive replacement of nitro groups were shown to be due to specific hapten-substituent-protein interactions by (a) showing that there was little difference in the interaction between these haptens and 3-methylindole (a model for the residue tryptophan-93L with which the hapten stacks in protein MOPC 315), (b) proving by 1H n.m.r. that the mode of hapten binding is constant and (c) showing that the differences in Kd were consistent with the relative hydrogen-bonding capacities of chlorine and the nitro moiety. In this way it was established that each nitro group forms a hydrogen bond. Furthermore, from consideration of the 1H n.m.r. chemical shifts of several dinitrophenyl haptens and their trinitrophenyl analogues, it was shown that there is no distortion of the o-nitro group on binding to the variable fragment of protein MOPC 315.  相似文献   

7.
O Zak  P Aisen 《Biochemistry》1988,27(3):1075-1080
A wide variety of thermodynamic, kinetic, and spectroscopic studies have demonstrated differences between the two metal-binding sites of transferrin. In the present investigation, we have further assessed these differences with respect to the binding of gadolinium, evaluated by UV difference spectrophotometry, electron paramagnetic resonance (EPR) titration, EPR difference spectroscopy in conjunction with urea gel electrophoresis, and equilibrium dialysis. Combinations of these studies establish that only one site of the protein binds Gd(III) sufficiently firmly to be characterized. In order to reveal which of the two sites accepts Gd(III), we made use of monoferric transferrins preferentially loaded with Fe(III) at either site in EPR spectroscopic studies. Because of the overlap of signals, difference spectroscopy was required to distinguish resonances arising from Fe(III) and Gd(III) specifically complexed to the protein. When iron is bound to the C-terminal site, leaving the N-terminal site free for binding of gadolinium, the difference spectrum shows no evidence of specific binding. However, when iron is bound to the N-terminal site, the difference spectrum shows a resonance line at g' = 4.1 indicative of specific binding, thus implicating the C-terminal site in the binding of Gd(III). The effective stability constant for the binding of Gd(III) to this site of transferrin at pH 7.4 and ambient pCO2 is 6.8 X 10(6) M-1. At physiological pCO2, the formation of nonbinding carbonato complexes of Gd(III) precludes a substantial role for transferrin in the transport of the lanthanide in vivo.  相似文献   

8.
The interactions between MOPC-315, a mouse myeloma protein with specificity for nitrophenyl haptens, and 19F-substituted haptens have been investigated using nuclear magnetic resonance (NMR) spectroscopy. The haptens studied are mono- or dinitrophenyl derivatives of gamma-aminobutyric acid, lysine, or glycine which have trifuoromethyl groups attached to the phenyl rings. Upon binding to immunoglobulin, the 19F nucleus experiences a downfield shift whose magnitude depends on the position of the trifluoromethyl group on the phenyl ring but is independent of other structural changes in the hapten such as the number of nitro groups attached to the phenyl ring. Further, the chemical shift of bound hapten is not influenced by the amount of the constant region attached to the binding site; we accordingly conclude that the presence of the distal, constant regions of the immunoglobulin molecule does not influence binding site interactions.  相似文献   

9.
Antisera against charged (p-azobenzoate and p-azoben zenesulfonate) and uncharged (dinitrophenyl) haptenic groups were produced in rabbits, and the equilibrium characteristics of hapten-antibody were measured by use of immunoadsorbents. The antibody to the uncharged hapten formed a stable binding with the hapten to the changes in ionic strength and pH. On the other hand, the antibodies to the charged haptens showed affinities sensitive to the changes in pH and ionic strength. Therefore, the effect of the pK(a) of ionizable haptens on the pH dependence of the hapten-antibody binding was studied by comparing the interactions between a series of para-substituted benzoic acids and the anti-p-azobenzoate antibody. The pH dependence of the interactions was strongly affected by the pK(a) of ionizable groups in haptens. Furthermore, the equilibrium characteristics of anti-p-aminobenzoyl dipeptides were compared. The characteristics of interactions were affected by the features of amino acid residues.  相似文献   

10.
Pre-resonance Raman spectroscopy was used to study the interactions of the nitro groups of dinitrophenyl haptens with three dinitrophenyl-binding antibody fragments: M315 Fv, M460 Fab' and X25 Fab'. The observed changes in frequency of modes associated with the nitro moieties are compared with solvent-induced changes for the model hapten 2,4-dinitroaniline. These comparisons demonstrate a specific interaction via the H2N--C--C--2-NO2 and 4-NO2 groups with the protein. The interaction with the 4-NO2 group appears to be absent for epsilon-N-2,4-dinitrophenyl-L-lysine bound to M315 Fv fragment in contrast with either 2,4-dinitrophenylaspartate or 2,4-dinitrophenylglycine bound to M315 Fv fragment, despite the much tighter binding of the lysine derivative. The implications of this for M315 Fv fragment in terms of the antibody specificity are discussed. Comparisons of the effect of binding to M460 Fab' and X25 Fab' fragments also revealed significant differences in the shifts of the nitro group vibrations of 2,4-dinitrophenyl-lysine and 2,4-dinitroaniline.  相似文献   

11.
The binding of four dinitrophenyl haptens to the mouse myeloma proteins MOPC 315 IgA (immunoglobulin A) and MOPC 460IgA was studied by resonance Raman spectroscopy. Isotopic substitution with 15N and 2H was used to assign features in the resonance Raman spectra of the free haptens. Changes in each of these features on binding to the proteins could then be attributed to interactions of the proteins' binding sites with either the p-NO2 or the o-NO2/amine regions of the haptens. The interactions between a given hapten and MOPC 315 IgA are often quite distinct from those between the same hapten and MOPC 460 IgA. Moreover, for both antibodies the nature of the R side chain in a Dnp-NHR (Dnp, 2,4-dinitrophenyl) compound appears to modify the interactions between the Dnp chromophore and the protein. Thus, with the haptens studied, there is no unique set of contacts between the Dnp group and the binding site. The contacts expected between epsilon-2,4-dinitrophenyl-L-lysine and the site on MOPC 315 IgA, on the basis of a recent model for this site [Dwek, Wain-Hobson, Dower, Gettins, Sutton, Perkins & Givol (1977) Nature (London) 266, 31--37] were not detected. However, the contacts between this hapten and the site on MOPC 460 IgA were closer to those predicted by the model for MOPC 315 IgA.  相似文献   

12.
S McManus  L Riechmann 《Biochemistry》1991,30(24):5851-5857
Two-dimensional (2D) 1H NMR spectroscopy was used to study the hapten-binding site of a recombinant antibody Fv fragment expressed in Escherichia coli. Point mutations of residues in the CDR loops of the Fv fragment were designed in order to investigate their influence on hapten binding and to make site-specific assignments of aromatic NMR proton signals. Two tyrosines giving NOEs to the ligand 2-phenyloxazolone were identified, residue 33 in CDR1 of the heavy chain and residue 32 in CDR1 of the light chain. The benzyl portion of 2-phenyloxazolone is located between these two residues. The binding site is close to the surface of the Fv fragment. Comparison with a different anti-2-phenyloxazolone antibody, the crystal structure of which has recently been solved, shows that the general location of the hapten-binding site in both antibodies is similar. However, in the crystallographically solved antibody, the hapten is bound farther from the surface in a pocket created by a short CDR3 loop of the heavy chain. In the binding site identified in the Fv fragment studied in this report, this space is probably filled by the extra seven residues of the CDR3.  相似文献   

13.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

14.
Nuclear magnetic resonance has been used to study the structure of the anti-spin label antibody AN02 combining site and kinetic rates for the hapten-antibody reaction. The association reaction for the hapten dinitrophenyl-diglycine (DNP-diGly) is diffusion-limited. The activation enthalpy for association, 5.1 kcal/mol, is close to the activation enthalpy for diffusion in water. Several reliable resonance assignments have been made with the aid of recently reported crystal structure. Structural data deduced from the nuclear magnetic resonance (n.m.r.) spectra compare favorably with the crystal structure in terms of the combining site amino acid composition, distances of tyrosine residues from the unpaired electron of the hapten, and residues in direct contact with the hapten. Evidence is presented that a single binding site region tyrosine residue can assume two distinct conformations on binding of DNP-diGly. The AN02 antibody is an autoantibody. Dimerization of the Fab fragments is blocked by the hapten DNP-diGly. The n.m.r. spectra suggests that some of the amino acid residues involved in the binding of the DNP-hapten are also involved in the Fab dimerization.  相似文献   

15.
The boronic functionalities on the outer surface of the Gd(III) bis(m-boroxyphenylamide)DTPA complex (Gd(III)L) enable it to bind to fructosamine residues of oxygenated glycated human adult hemoglobin. The formation of the macromolecular adduct can be assessed by NMR spectroscopy via observation of the enhancement of the solvent water proton relaxation rate. Unexpectedly, a strong binding interaction was also observed for the oxygenated unglycated human adult hemoglobin, eventually displaying a much higher relaxation enhancement. From relaxation rate measurements it was found that two Gd(III)L complexes interact with one hemoglobin tetramer (KD = 1.0 x 10(-5) M and 4.6 x 10(-4) M, respectively), whereas no interaction has been observed with monomeric hemoproteins. A markedly higher affinity of the Gd(III)L complex has been observed for oxygenated and aquo-met human adult hemoglobin derivatives with respect to the corresponding deoxy derivative. Upon binding, a net change in the quaternary structure of hemoglobin has been assessed by monitoring the changes in the high-resolution 1H-NMR spectrum of the protein as well as in the Soret absorption band. On the basis of these observations and the 11B NMR results obtained with the diamagnetic La(III)L complex, we suggest that the interaction between the lanthanide complex and deoxygenated, oxygenated, and aquo-met derivatives of human adult hemoglobin takes place at the 2, 3-diphosphoglycerate (DPG) binding site, through the formation of N-->B coordinative bonds at His143beta and His2beta residues of different beta-chains. The stronger binding to the oxygenated form is then responsible for a shift of the allosteric equilibrium toward the high-affinity R-state. Accordingly, Gd(III)L affinity for oxygenated human fetal hemoglobin (lacking His143beta) is significantly lower than that observed for the unglycated human adult tetramer.  相似文献   

16.
The active sites of enzymes can be studied in great detail using nuclear magnetic resonance spectroscopy. The determination of pKa values of active site histidine residues in bovine pancreatic ribonuclease and the characterization of the binding of peptide hormones to carrier proteins are two such examples. The study of the active site of staphylococcal nuclease is another example and is presented in detail in this paper. The structure of 3'5'-thymidine diphosphate bound in the active site of staphylococcal nuclease has been studied by measuring the relaxation rate enhancement of substrate analog nuclei by a paramagnetic metal ion. The lanthanide ion, Gd(III), was substituted for Ca(II) in the formation of the ternary complex of nuclease: Gd(III) : 3'5'-thymidine diphosphate. Measurements were made of the transverse relaxation rates of protons and the longitudinal and transverse relaxation rates of the phosphorus nuclei of bound nucleotide. Internuclear distances between the metal ion and atoms of the 3'5'-thymidine diphosphate nucleotide were determined from these data by using the Solomon-Bloembergen equation. In general, these distances corresponded closely to those determined by previous X-ray crystallography of the thymidine diphosphate complex. These internuclear distances were also used with a computer program and graphics display to solve for metal : nucleotide geometries which were consistent with the experimental data. A geometry similar to the structure of the metal : nucleotide complex bound to nuclease determined by X-ray analysis was one of the solutions to this computer modeling process. For staphylococcal nuclease the NMR and X-ray methods yield compatible high resolution information about the structure of the active site.  相似文献   

17.
The binding of Tnp (2,4,6-trinitrophenyl) derivatives to the Fv fragment (variable region of heavy and light chains) of the mouse myeloma IgA protein MOPC 315 was investigated by 270MHz proton nuclear magnetic resonance. Two of the haptens, Tnp-glycine and Tnp-l-aspartate, are in fast exchange with the Fv fragment, and the changes in chemical shifts for both protein and hapten resonances were determined by titrations. For the tightly binding hapten epsilon-N-Tnp-alpha-N-acetyl-l-lysine, which is in slow exchange with the Fv fragment, the changes in chemical shifts for the hapten H(3)+H(5) resonances were determined by cross-saturation. By using these data and the known structure of the combining site of protein MOPC 315 [Dwek, Wain-Hobson, Dower, Gettins, Sutton, Perkins & Givol (1977), Nature (London) 266, 31-37] the mode of binding of Tnp derivatives is deduced by ring-current calculations. The trinitrophenyl ring stacks with tryptophan-93(L) (light chain) in the ;aromatic box' formed by tryptophan-93(L), tyrosine-34(L) and phenyl-alanine-34(H) (heavy chain). Further evidence for the stacking interaction with a tryptophan residue is provided by the similarity of the optical-difference spectra observed with Tnp-aminomethylphosphonate in the presence of either the Fab fragment (light chain and N-terminal half of heavy chain) of protein MOPC 315 or tryptophan. These data show that the modes of binding of all the Tnp derivatives are very similar, despite a 100-fold range in their affinities. It is also concluded that the modes of binding of Dnp (2,4-dinitrophenyl) and Tnp derivatives to protein MOPC 315 are very similar, and that the structural basis for this is that the aromatic box is large enought to allow the trinitrophenyl ring to stack with tryptophan-93(L) while still forming hydrogen bonds to asparagine-36(L) and tyrosine-34(L).  相似文献   

18.
The binding of the haptens DnpOH, Dnp-lysine and Dnp-aspartate to the mouse myeloma IgA protein was studied using 1H 270 MHz nuclear magnetic resonance spectroscopy. The n.m.r. difference spectra showed fewer resonance perturbed than expected. This is explained in terms of chemical exchange between the T and R states of the protein as described by the kinetic scheme of Lancet and Pecht (Lancet, D. and Pecht, I. Proc. Natl Acad. Sci. USA 1976, 73 3549 53). Large upfield chemical shifts were observed on the resonances of the hapten DnpOH on binding to M460. These are interpreted as indicating an aromatic environment for the Dnp ring. In contrast, the Dnp-aspartate resonances were not shifted at all, as would be expected from the observed rate constants using the kinetic scheme. The shifts observed on the hapten Dnp-lysine were much smaller than those observed for DnpOH. A range of possible values of the shifts were calculated for the T and R states, for Dnp-lysine and DnpOH. For both haptens the combining site environment differed between the T and R conformational states of M460, suggesting that the conformational change involves the combining site.  相似文献   

19.
113Cd-n.m.r. studies were used to investigate the binding of the lanthanide ions La3+, Gd3+, Tb3+, Yb3+ and Lu3+ to parvalbumins. It was shown that lanthanide ions with a smaller ionic radius bind sequentially to Cd2+-saturated parvalbumin, whereas those with a larger ionic radius bind with similar affinity to both the CD site and the EF site. The smallest ion, Lu3+, does in fact not compete significantly with Cd2+ for the CD site in carp parvalbumin, but appears to bind only to the EF site. This preference of the smaller lanthanide ions for the EF site was used to assign the n.m.r. signals for protein-bound 113Cd. By using Cd n.m.r. and Tb3+ fluorescence it was also shown for alpha-lineage parvalbumin from pike that these proteins possess a third site that can bind lanthanide ions. This site is, however, much weaker than in the beta-lineage parvalbumins. It was used to assign the 113Cd resonances from protein-bound Cd2+ ions in the spectrum of pike pI5.0 parvalbumin.  相似文献   

20.
The lanthanide ions Lu3+ (diamagnetic) and Gd3+ (paramagnetic broadening probe) were used to displace Ca2+ from the high-affinity cation binding site on G-actin. The effects of these higher-affinity ions on the proton nuclear magnetic resonance spectrum of actin were recorded. The aliphatic proton envelope in the Gd-actin sample exhibited a complex array of changes due to the proximity of Gd to several aliphatic residues. No such changes were observed in the diamagnetic Lu-actin control spectrum. By contrast, the aromatic proton envelope remained largely unaffected in both Gd-actin and Lu-actin samples. However, the adenosine moiety on the actin-bound ATP became increasingly mobilized without the triphosphate chain being released from the ATP binding site. Maximum adenosine mobilization occurred with approximately 1 mol of lanthanide ion bound per mol of actin. The absence of changes in the aromatic proton envelope suggests that the high-affinity cation binding site is in a region well removed from the adenosine moiety of bound ATP as well as any aromatic side-chains. The separation of the ATP and cation sites was further explored using the fluorescent ATP analogues FTP and epsilon-ATP. Tb3+ bound to the high-affinity cation site was found to be separated by 16 A from the FTP chromophore bound to the nucleotide binding site on actin. Since this distance is greater than can be accommodated on a model of the Tb-ATP complex, we conclude that the sites are physically separate. This conclusion was further reinforced by experiments involving the quenching of epsilon-ATP fluorescence by Mn2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号