首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
During myofibrillogenesis, many muscle structural proteins assemble to form the highly ordered contractile sarcomere. Mutations in these proteins can lead to dysfunctional muscle and various myopathies. We have analyzed the Drosophila melanogaster troponin T (TnT) up1 mutant that specifically affects the indirect flight muscles (IFM) to explore troponin function during myofibrillogenesis. The up1 muscles lack normal sarcomeres and contain "zebra bodies," a phenotypic feature of human nemaline myopathies. We show that the up(1) mutation causes defective splicing of a newly identified alternative TnT exon (10a) that encodes part of the TnT C terminus. This exon is used to generate a TnT isoform specific to the IFM and jump muscles, which during IFM development replaces the exon 10b isoform. Functional differences between the 10a and 10b TnT isoforms may be due to different potential phosphorylation sites, none of which correspond to known phosphorylation sites in human cardiac TnT. The absence of TnT mRNA in up1 IFM reduces mRNA levels of an IFM-specific troponin I (TnI) isoform, but not actin, tropomyosin, or troponin C, suggesting a mechanism controlling expression of TnT and TnI genes may exist that must be examined in the context of human myopathies caused by mutations of these thin filament proteins.  相似文献   

2.
3.
Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm- TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.  相似文献   

4.
Troponin C (TpnC), the calcium-binding subunit of the troponin regulatory complex in the muscle thin filament, is encoded by multiple genes in insects. To understand how TpnC genes have evolved, we characterized the gene number and structure in a number of insect species. The TpnC gene complement is five genes in Drosophilidae as previously reported for D. melanogaster. Gene structures are almost identical in D. pseudoobscura, D. suboboscura, and D. virilis. Developmental patterns of expression are also conserved in Drosophila subobscura and D. virilis. Similar, but not completely equivalent, TpnC gene repertoires have been identified in the Anopheles gambiae and Apis mellifera genomes. Insect TpnC sequences can be divided into three groups, allowing a systematic classification of newly identified genes. The pattern of expression of the Apis mellifera genes essentially agrees with the pattern in Drosophilidae, providing further functional support to the classification. A model for the evolution of the TpnC genes is proposed including the most likely pathway of insect TpnC diversification. Our results suggest that the rapid increase in number and sequence specialization of the adult Type III isoforms can be correlated with the evolution of the holometabolous mode of development and the acquisition of asynchronous indirect flight muscle function in insects. This evolutionarily specialization has probably been achieved independently in different insect orders.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

5.
Tropomyosins are a family of actin binding proteins encoded by a group of highly conserved genes. Humans have four tropomyosin-encoding genes: TPM1, TPM2, TPM3, and TPM4, each of which is known to generate multiple isoforms by alternative splicing, promoters, and 3' end processing. TPM1 is the most versatile and encodes a variety of tissue specific isoforms. The TPM1 isoform specific to striated muscle, designated TPM1alpha, consists of 10 exons: 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b. In this study, using RT-PCR with adult and fetal human RNAs, we present evidence for the expression of a novel isoform of the TPM1 gene that is specifically expressed in cardiac tissues. The new isoform is designated TPM1kappa and contains exon 2a instead of 2b. Ectopic expression of human GFP.TPM1kappa fusion protein can promote myofibrillogenesis in cardiac mutant axolotl hearts that are lacking in tropomyosin.  相似文献   

6.
7.
Insect flight muscles have been classified as either synchronous or asynchronous based on the coupling between excitation and contraction. In the moth Manduca sexta, the flight muscles are synchronous and do not display stretch activation, which is a property of asynchronous muscles. We annotated the M. sexta genes encoding the major myofibrillar proteins and analyzed their isoform pattern and expression. Comparison with the homologous genes in Drosophila melanogaster indicates both difference and similarities. For proteins such as myosin heavy chain, tropomyosin, and troponin I the availability and number of potential variants generated by alternative spicing is mostly conserved between the two insects. The exon usage associated with flight muscles indicates that some exon sets are similarly used in the two insects, whereas others diverge. For actin the number of individual genes is different and there is no evidence for a flight muscle specific isoform. In contrast for troponin C, the number of genes is similar, as well as the isoform composition in flight muscles despite the different calcium regulation. Both troponin I and tropomyosin can include COOH-terminal hydrophobic extensions similar to tropomyosinH and troponinH found in D. melanogaster and the honeybee respectively.  相似文献   

8.
cDNAs containing the complete coding sequences of four isoforms of troponin T derived from 1-week-old chick skeletal muscle have been isolated and sequenced. While the 5' and 3' untranslated regions and most of the coding sequence were identical for each, dramatic differences were observed in the NH2-terminal region corresponding to amino acid residues 10-37 of rabbit skeletal troponin T. These sequence differences correspond to the alternatively spliced but not mutually exclusive exons 4 to 8 of the rat skeletal muscle troponin T gene. In addition, we observe a sequence corresponding to an extra exon or exons (between 5 and 6) present in the chicken skeletal muscle gene and not previously detected in the rat skeletal or chicken cardiac genes. This sequence of 63 nucleotides consists of an almost perfect repeat of 30 and 33 nucleotides and has previously been shown to be represented as a protein variant in chicken skeletal muscle. A difference is also present in one cDNA clone corresponding to the alternatively spliced (mutually exclusive) exons 16 and 17 of the rat gene. In the protein, this corresponds to a region implicated in the interaction of troponin T with troponin C, tropomyosin, and perhaps troponin I and F-actin.  相似文献   

9.
10.
Previous studies of the tropomyosin-alpha gene using Northern blot and ribonuclease protection assay methods identified the expression of nine isoforms generated by alternative splicing of exons. Several of these isoforms were characterized as tissue-specific and/or developmentally specific. The present study used a highly sensitive RT-PCR-based strategy to assay the expression of these and many novel isoforms in a variety of adult rat tissues. All 9 isoforms were found to be expressed in all tissues evaluated. Furthermore, 20 new isoforms were identified with varying tissue specificity. Sequence analysis confirmed exon splicing patterns. This greater degree of isoform generation parallels recent findings for another tropomyosin gene, the TM-5 gene, for which the generation of new isoforms, in particular, ones using novel junctions for carboxy-terminal-coding exons, was also shown. Several of the new cDNA-based isoforms predict tropomyosin protein species that are 10 amino acids longer than previously characterized high-molecular-weight tropomyosin-alpha gene isoforms. The apparent lack of significant tissue specificity in the expression of tropomyosin isoforms suggests that many of these isoforms have more generic roles in cell function.  相似文献   

11.
12.
In order to show the tissue-specific distribution of troponin T (TnT) isoforms in avian skeletal muscles, their expression was examined by electrophoresis of the breast and leg muscles of seven avian species and immunoblotting with the antiserum against fast skeletal muscle TnT. It has been reported in the chicken that breast-muscle-type (B-type) and leg-muscle-type (L-type) TnT isoforms are expressed specifically in the adult breast and leg muscles, respectively. Their differential expression patterns were confirmed in all birds examined in this study. The expression of a segment encoded by the exon x series of TnT was also examined by immunoblotting with the antiserum against a synthetic peptide derived from the exon x3 sequence, because the segment has been shown to be included exclusively in the B-type, but not in the L-type TnT. The expression of the segment was found only in the breast muscle, but not in the leg muscle of all birds examined. TnT cDNA sequences from the duck breast and leg muscles were determined and showed that only B-type TnT had an exon x-related sequence, suggesting that the expression of B-type TnT containing the exon x-derived segment is conserved consistently in the birds.  相似文献   

13.
14.
15.
16.
Troponin T is a central component of the thin filament-associated troponin-tropomyosin system and plays an essential role in the Ca(2+) regulation of striated muscle contraction. The importance of the structure and function of troponin T is evident in the regulated isoform expression during development and the point mutations resulting in familial hypertrophic and dilated cardiomyopathies. We report here that turkeys with inherited dilated cardiomyopathy and heart failure express an unusual low molecular weight cardiac troponin T missing 11 amino acids due to the splice out of the normally conserved exon 8-encoded segment. The deletion of a 9-bp segment from intron 7 of the turkey cardiac troponin T gene may be responsible for the weakened splicing of the downstream exon 8 during mRNA processing. The exclusion of the exon 8-encoded segment results in conformational changes in cardiac troponin T, an altered binding affinity for troponin I and tropomyosin, and an increased calcium sensitivity of the actomyosin ATPase. Expression of the exon 8-deleted cardiac troponin T prior to the development of cardiomyopathy in turkeys indicates a novel RNA splicing disease and provides evidence for the role of troponin T structure-function variation in myocardial pathogenesis and heart failure.  相似文献   

17.
The tropomyosin gene tmy-1/lev-11 of Caenorhabditis elegans spans 14.5 kb and encodes three isoforms by alternative splicing. To identify, characterize and compare the genome and tissue expression of a fourth isoform, the technique of rapid amplification of cDNA ends and microinjection with lacZ and gfp fusion plasmids were employed. We elucidated CeTMIV, a fourth isoform of tmy-1, which encoded a 256 residue polypeptide. CeTMIV isoform had a similar promoter region to CeTMIII isoform, but was alternatively spliced to generate a cDNA that differed in two exons. The tmy-1::lacZ and tmy-1::gfp fusion genes, with 3.2 kb promoter sequence and 1.1 kb of CeTMIV isoform specific exons, were expressed in the pharyngeal and intestinal cells. Further unidirectional deletion of the sequence located the primary promoter region 853 bp upstream from the initial codon. We show within the upstream region, the presence of B and C subelement-like sequences of myo-2, which may be used to stimulate pharyngeal expression. Despite the presence of a ges-1 like sequence, we were unable to locate the two GATA sites required for intestinal expression. Reassessing tissue expression for CeTMIII isoform with newly constructed fusion plasmids, we showed further expression in germ-line tissue and intestinal cells in addition to pharyngeal expression. Finally, to demonstrate that tropomyosin is essential for development, we inactivated the body wall and pharynx-specific isoforms by RNA-mediated interference. In addition to 50-75 % embryonic lethality in both cases, the worms that survived body wall interference had abnormal body morphology and uncoordinated movements, and those that survived pharynx interference had deformed pharynges and gut regions. These results show the function of tropomyosin in normal muscle filament assembly and embryonic development, and illustrate the different expression patterns characteristic of tropomyosin isoforms in C. elegans.  相似文献   

18.
19.
Tropomyosin binds end to end along the actin filament. Tropomyosin ends, and the complex they form, are required for actin binding, cooperative regulation of actin filaments by myosin, and binding to the regulatory protein, troponin T. The aim of the work was to understand the isoform and structural specificity of the end-to-end association of tropomyosin. The ability of N-terminal and C-terminal model peptides with sequences of alternate alpha-tropomyosin isoforms, and a troponin T fragment that binds to the tropomyosin overlap, to form complexes was analyzed using circular dichroism spectroscopy. Analysis of N-terminal extensions (N-acetylation, Gly, AlaSer) showed that to form an overlap complex between the N-terminus and the C-terminus requires that the N-terminus be able to form a coiled coil. Formation of a ternary complex with the troponin T fragment, however, effectively takes place only when the overlap complex sequences are those found in striated muscle tropomyosins. Striated muscle tropomyosins with N-terminal modifications formed ternary complexes with troponin T that varied in affinity in the order: N-acetylated > Gly > AlaSer > unacetylated. The circular dichroism results were corroborated by native gel electrophoresis, and the ability of the troponin T fragment to promote binding of full-length tropomyosins to filamentous actin.  相似文献   

20.
The different isoforms of fast skeletal muscle troponin T (TnT) are generated by alternative splicing of several 5' exons in the fast TnT gene. In rabbit skeletal muscle this process results in three major fast TnT species, TnT1f, TnT2f and TnT3f, that differ in a region of 30 to 40 amino acid residues near the N terminus. Differential expression of these three isoforms modulates the activation of the thin filament by calcium. To establish a basis for further structure-function studies, we have sequenced the N-terminal region of these proteins. TnT2f is the fast TnT sequenced by Pearlstone et al. The larger species TnT1f contains six additional amino acid residues identical in sequence and position to those encoded by exon 4 in the rat fast skeletal muscle TnT gene. TnT3f also contains that sequence but lacks 17 amino acid residues spanning the region encoded by exons 6 and 7 of the rat gene. These three TnTs appear to be generated by discrete alternative splicing pathways, each differing by a single event. Comparison of these TnT sequences with those from chicken fast skeletal muscle and bovine heart shows that the splicing pattern resulting in the excision of exon 4 is evolutionarily conserved and leads to a more calcium-sensitive thin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号