首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New species arise as reproductive isolation evolves between diverging populations. Here we review recent work in the genetics of postzygotic reproductive isolation-the sterility and inviability of species hybrids. Over the last few years, research has taken two new directions. First, we have begun to learn a good deal about the population genetic forces driving the evolution of postzygotic isolation. It has, for instance, become increasingly clear that conflict-driven processes, like sexual selection and meiotic drive, may contribute to the evolution of hybrid sterility. Second, we have begun to learn something about the identity and molecular characteristics of the actual genes causing hybrid problems. Although molecular genetic data are limited, early findings suggest that "speciation genes" correspond to loci having normal functions within species and that these loci sometimes diverge as a consequence of evolution in gene regulation.  相似文献   

2.
Speciation is the combination of evolutionary processes that leads to the reproductive isolation of different populations. We investigate the significance of sex-chromosome evolution on the development of post- and prezygotic isolation in two naturally hybridizing Ficedula flycatcher species. Applying a tag-array-based mini-sequencing assay to genotype single nucleotide polymorphisms (SNPs) and interspecific substitutions, we demonstrate rather extensive hybridization and backcrossing in sympatry. However, gene flow across the partial postzygotic barrier (introgression) is almost exclusively restricted to autosomal loci, suggesting strong selection against introgression of sex-linked genes. In addition to this partial postzygotic barrier, character displacement of male plumage characteristics has previously been shown to reinforce prezygotic isolation in these birds. We show that male plumage traits involved in reinforcing prezygotic isolation are sex linked. These results suggest a major role of sex-chromosome evolution in mediating post- and prezygotic barriers to gene flow and point to a causal link in the development of the two forms of reproductive isolation.  相似文献   

3.
4.
One of the longest debates in biology has been over the relative importance of different isolating barriers in speciation. However, for most species, there are few data evaluating their relative contributions and we can only speculate on the general roles of pre- and postzygotic isolation. Here, we quantify the absolute and cumulative contribution of 19 potential reproductive barriers between two sympatric damselfly sister species, Ischnura elegans and I. graellsii, including both premating (habitat, temporal, sexual and mechanical isolation) and postmating barriers (prezygotic: sperm insemination success and removal rate, oviposition success, fertility, fecundity; postzygotic: hybrid viability, hybrid sterility and hybrid breakdown). In sympatry, total reproductive isolation between I. elegans females and I. graellsii males was 95.2%, owing mostly to a premating mechanical incompatibility (93.4%), whereas other barriers were of little importance. Isolation between I. graellsii females and I. elegans males was also nearly complete (95.8%), which was caused by the cumulative action of multiple prezygotic (n= 4, 75.4%) and postzygotic postmating barriers (n= 5, 7.4%). Our results suggest that premating barriers are key factors in preventing gene flow between species, and that the relative strengths of premating barriers is highly asymmetrical between the reciprocal crosses.  相似文献   

5.
Studies of postzygotic isolation often involve well-differentiated taxa that show a consistent level of incompatibility, thereby limiting our understanding of the initial stages and development of reproductive barriers. Dendroctonus ponderosae provides an informative system because recent evidence suggests that distant populations produce hybrids with reproductive incompatibilities. Dendroctonus ponderosae shows an isolation-by-distance gene flow pattern allowing us to characterize the evolution of postzygotic isolation (e.g., hybrid inviability, hybrid sterility) by crossing populations along a continuum of geographic/genetic divergence. We found little evidence of hybrid inviability among these crosses. However, crosses between geographically distant populations produced sterile males (consistent with Haldane's rule). This effect was not consistent with the fixation of mutations in an isolation-by-distance pattern, but instead is spatially localized. These reproductive barriers are uncorrelated with a reduction in gene flow suggesting their recent development. Crosses between geographically proximal populations bounding the transition from compatibility to hybrid male sterility showed evidence of unidirectional reduction in hybrid male fecundity. Our study describes significant postzygotic isolation occurring across a narrow and molecularly cryptic geographic zone between the states of Oregon and Idaho. This study provides a view of the early stages of postzygotic isolation in a geographically widespread species.  相似文献   

6.
Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator‐mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (–0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre‐ and postzygotic reproductive isolation between closely related species. It also suggests that pollinator‐mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.  相似文献   

7.
The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.  相似文献   

8.
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving 19 pairs of plant taxa, we assessed the strength and patterns of asymmetry of multiple prezygotic and postzygotic reproductive isolating barriers. We then reviewed contemporary knowledge of the genetic architecture of reproductive isolation and the relative role of chromosomal and genic factors in intrinsic postzygotic isolation. On average, we found that prezygotic isolation is approximately twice as strong as postzygotic isolation, and that postmating barriers are approximately three times more asymmetrical in their action than premating barriers. Barriers involve a variable number of loci, and chromosomal rearrangements may have a limited direct role in reproductive isolation in plants. Future research should aim to understand the relationship between particular genetic loci and the magnitude of their effect on reproductive isolation in nature, the geographical scale at which plant speciation occurs, and the role of different evolutionary forces in the speciation process.  相似文献   

9.
The evolution of F1 postzygotic incompatibilities in birds   总被引:1,自引:1,他引:0  
Abstract.— We analyzed the rate at which postzygotic incompatibilities accumulate in birds. Our purposes were to assess the role of intrinsic F1 hybrid infertility and inviability in the speciation process, and to compare rates of loss of fertility and viability between the sexes. Among our sample more than half the crosses between species in the same genus produce fertile hybrids. Complete loss of F1 hybrid fertility takes on the order of millions of years. Loss of F1 hybrid viability occurs over longer timescales than fertility: some viable hybrids have been produced between taxa that appear to have been separated for more than 55 my. There is strong support for Haldane's rule, with very few examples where the male has lower fitness than the female. However, in contrast to Drosophila , fertility of the homogametic sex in the F1 appears to be lost before viability of the heterogametic sex in the F1. We conclude that the time span of loss of intrinsic hybrid fertility and viability is often, but not always, longer than the time to speciation. Premating isolation is an important mechanism maintaining reproductive isolation in birds. In addition, other factors causing postzygotic reproductive isolation such as ecological causes of hybrid unfitness, reduced mating success of hybrids, and genetic incompatibilities in the F2s and backcrosses may often be involved in the speciation process.  相似文献   

10.
The Genetics of Postzygotic Isolation in the Drosophila Virilis Group   总被引:8,自引:7,他引:1  
H. A. Orr  J. A. Coyne 《Genetics》1989,121(3):527-537
In a genetic study of postzygotic reproductive isolation among species of the Drosophila virilis group, we find that the X chromosome has the largest effect on male and female hybrid sterility and inviability. The X alone has a discernible effect on postzygotic isolation between closely related species. Hybridizations involving more distantly related species also show large X-effects, although the autosomes may also play a role. In the only hybridization yet subjected to such analysis, we show that hybrid male and female sterility result from the action of different X-linked loci. Our results accord with genetic studies of other taxa, and support the view that both Haldane's rule (heterogametic F1 sterility or inviability) and the large effect of the X chromosome on reproductive isolation result from the accumulation by natural selection of partially recessive or underdominant mutations. We also describe a method that allows genetic analysis of reproductive isolation between species that produce completely sterile or inviable hybrids. Such species pairs, which represent the final stage of speciation, cannot be analyzed by traditional methods. The X chromosome also plays an important role in postzygotic isolation between these species.  相似文献   

11.
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a 'magic trait'. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years.  相似文献   

12.
The molecular and evolutionary basis of reproductive isolation in plants   总被引:1,自引:0,他引:1  
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.  相似文献   

13.
Empirical estimates of the relative importance of different barriers to gene flow between recently diverged species are important for understanding processes of speciation. I investigated the factors contributing to reproductive isolation between Costus pulverulentus and C. scaber (Costaceae), two closely related hummingbird-pollinated understory Neotropical herbs. I studied broad-scale geographic isolation, microhabitat isolation, flowering phenology, overlap in pollinator assemblages, floral constancy by pollinators, mechanical floral isolation, pollen-pistil interactions, seed set in interspecific crosses, and postzygotic isolation (hybrid seed germination, greenhouse survival to flowering, and pollen fertility). Aside from substantial geographic isolation, I found evidence for several factors contributing to reproductive isolation in the sympatric portion of their geographic ranges, but the identity and relative strength of these factors varied depending on the direction of potential gene flow. For C. pulverulentus as the maternal parent, mechanical floral isolation was the most important factor, acting as a complete block to interspecific pollen deposition. For C. scaber as the maternal parent, microhabitat isolation, pollinator assemblage, mechanical floral isolation, and postpollination pollen-pistil incompatibility were important. Overall, prezygotic barriers were found to be strong, resulting in 100% reproductive isolation for C. pulverulentus as the maternal parent and 99.0% reproductive isolation for C. scaber as the maternal parent. Some postzygotic isolation also was identified in the F1 generation, increasing total isolation for C. scaber to 99.4%. The results suggest that ecological factors, including habitat use and plant-pollinator interactions, contributed to speciation in this system and evolved before extensive intrinsic postzygotic isolation.  相似文献   

14.
We test the relative rates of evolution of pre- and postzygotic reproductive isolation using eight populations of the sexually dimorphic stalk-eyed flies Cyrtodiopsis dalmanni and C. whitei. Flies from these populations exhibit few morphological differences yet experience strong sexual selection on male eyestalks. To measure reproductive isolation we housed one male and three female flies from within and between these populations in replicate cages and then recorded mating behavior, sperm transfer, progeny production, and hybrid fertility. Using a phylogeny based on partial sequences of two mitochondrial genes, we found that premating isolation, postmating isolation prior to hybrid eclosion, and female hybrid sterility evolve gradually with respect to mitochondrial DNA sequence divergence. In contrast, male hybrid sterility evolves much more rapidly-at least twice as fast as any other form of reproductive isolation. Hybrid sterility, therefore, obeys Haldane's rule. Although some brood sex ratios were female biased, average brood sex ratio did not covary with genetic distance, as would be expected if hybrid inviability obeyed Haldane's rule. The likelihood that forces including sexual selection and intra- and intergenomic conflict may have contributed to these patterns is discussed.  相似文献   

15.

Background

The evolution of reproductive traits, such as hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation), have shown their key role in speciation. Theoretical modeling has recently predicted that close linkage between genes controlling pre- and postzygotic reproductive isolation could accelerate the conditions for speciation. Postzygotic isolation could develop during the sympatric speciation process contributing to the divergence of populations. Using hybrid fitness as a measure of postzygotic reproductive isolation, we empirically studied population divergence in perch (Perca fluviatilis L.) from two genetically divergent populations within a lake.

Results

During spawning time of perch we artificially created parental offspring and F1 hybrids of the two populations and studied fertilization rate and hatching success under laboratory conditions. The combined fitness measure (product of fertilization rate and hatching success) of F1 hybrids was significantly reduced compared to offspring from within population crosses.

Conclusion

Our results suggest intrinsic genetic incompatibility between the two populations and indicate that population divergence between two populations of perch inhabiting the same lake may indeed be promoted by postzygotic isolation.  相似文献   

16.
Evolution of reproductive isolation in plants   总被引:1,自引:0,他引:1  
Widmer A  Lexer C  Cozzolino S 《Heredity》2009,102(1):31-38
Reproductive isolation is essential for the process of speciation and much has been learned in recent years about the ecology and underlying genetics of reproductive barriers. But plant species are typically isolated not by a single factor, but by a large number of different pre- and postzygotic barriers, and their potentially complex interactions. This phenomenon has often been ignored to date. Recent studies of the relative importance of different isolating barriers between plant species pairs concluded that prezygotic isolation is much stronger than postzygotic isolation. But studies of the patterns of reproductive isolation in plants did not find that prezygotic isolation evolves faster than postzygotic isolation, in contrast to most animals. This may be due to the multiple premating barriers that isolate most species pairs, some of which may be controlled by few genes of major effect and evolve rapidly, whereas others have a complex genetic architecture and evolve more slowly. Intrinsic postzygotic isolation in plants is correlated with genetic divergence, but some instrinsic postzygotic barriers evolve rapidly and are polymorphic within species. Extrinsic postzygotic barriers are rarely included in estimates of different components of reproductive isolation. Much remains to be learned about ecological and molecular interactions among isolating barriers. The role of reinforcement and reproductive character displacement in the evolution of premating barriers is an open topic that deserves further study. At the molecular level, chromosomal and genic isolation factors may be associated and act in concert to mediate reproductive isolation, but their interactions are only starting to be explored.  相似文献   

17.
In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.  相似文献   

18.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

19.
Speciation despite gene flow when developmental pathways evolve   总被引:7,自引:0,他引:7  
Abstract.— Evolutionary biologists assume that species formation requires a drastic reduction in gene exchange between populations, but the rate sufficient to prevent speciation is unknown. To study speciation, we use a new class of population genetic models that incorporate simple developmental genetic rules, likely present in all organisms, to construct the phenotype. When we allow replicate populations to evolve in parallel to a new, shared optimal phenotype, often their hybrids acquire poorly regulated phenotypes: Dobzhansky-Muller incompatibilities arise and postzygotic reproductive isolation evolves. Here we show that, although gene exchange does inhibit this process, it is the proportion of migrants exchanged ( m ) rather than the number of migrants ( Nm ) that is critical, and rates as high as 16 individuals exchanged per generation still permit the evolution of postzygotic isolation. Stronger directional selection counters the inhibitory effect of gene flow, increasing the speciation probability. We see similar results when populations in a standard two-locus, two-allele Dobzhansky-Muller model are subject to simultaneous directional selection and gene flow. However, in developmental pathway models with more than two loci, gene flow is more able to impede speciation. Genetic incompatibilities arise as frequent by-products of adaptive evolution of traits determined by regulatory pathways, something that does not occur when phenotypes are modeled using the standard, additive genetic framework. Development therefore not only constrains the microevolutionary process, it also facilitates the interactions among genes and gene products that make speciation more likely–even in the face of strong gene flow.  相似文献   

20.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号