首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoprotein structure determination and quantification by MS requires efficient isolation of glycopeptides from a proteolytic digest of complex protein mixtures. Here we describe that the use of acids as ion-pairing reagents in normal-phase chromatography (IP-NPLC) considerably increases the hydrophobicity differences between non-glycopeptides and glycopeptides, thereby resulting in the reproducible isolation of N-linked high mannose type and sialylated glycopeptides from the tryptic digest of a ribonuclease B and fetuin mixture. The elution order of non-glycopeptides relative to glycopeptides in IP-NPLC is predictable by their hydrophobicity values calculated using the Wimley-White water/octanol hydrophobicity scale. O-linked glycopeptides can be efficiently isolated from fetuin tryptic digests using IP-NPLC when N-glycans are first removed with PNGase. IP-NPLC recovers close to 100% of bacterial N-linked glycopeptides modified with non-sialylated heptasaccharides from tryptic digests of periplasmic protein extracts from Campylobacter jejuni 11168 and its pglD mutant. Label-free nano-flow reversed-phase LC-MS is used for quantification of differentially expressed glycopeptides from the C. jejuni wild-type and pglD mutant followed by identification of these glycoproteins using multiple stage tandem MS. This method further confirms the acetyltransferase activity of PglD and demonstrates for the first time that heptasaccharides containing monoacetylated bacillosamine are transferred to proteins in both the wild-type and mutant strains. We believe that IP-NPLC will be a useful tool for quantitative glycoproteomics.Protein glycosylation is a biologically significant and complex post-translational modification, involved in cell-cell and receptor-ligand interactions (14). In fact, clinical biomarkers and therapeutic targets are often glycoproteins (59). Comprehensive glycoprotein characterization, involving glycosylation site identification, glycan structure determination, site occupancy, and glycan isoform distribution, is a technical challenge particularly for quantitative profiling of complex protein mixtures (1013). Both N- and O-glycans are structurally heterogeneous (i.e. a single site may have different glycans attached or be only partially occupied). Therefore, the MS1 signals from glycopeptides originating from a glycoprotein are often weaker than from non-glycopeptides. In addition, the ionization efficiency of glycopeptides is low compared with that of non-glycopeptides and is often suppressed in the presence of non-glycopeptides (1113). When the MS signals of glycopeptides are relatively high in simple protein digests then diagnostic sugar oxonium ion fragments produced by, for example, front-end collisional activation can be used to detect them. However, when peptides and glycopeptides co-elute, parent ion scanning is required to selectively detect the glycopeptides (14). This can be problematic in terms of sensitivity, especially for detecting glycopeptides in digests of complex protein extracts.Isolation of glycopeptides from proteolytic digests of complex protein mixtures can greatly enhance the MS signals of glycopeptides using reversed-phase LC-ESI-MS (RPLC-ESI-MS) or MALDI-MS (1524). Hydrazide chemistry is used to isolate, identify, and quantify N-linked glycopeptides effectively, but this method involves lengthy chemical procedures and does not preserve the glycan moieties thereby losing valuable information on glycan structure and site occupancy (1517). Capturing glycopeptides with lectins has been widely used, but restricted specificities and unspecific binding are major drawbacks of this method (1821). Under reversed-phase LC conditions, glycopeptides from tryptic digests of gel-separated glycoproteins have been enriched using graphite powder medium (22). In this case, however, a second digestion with proteinase K is required for trimming down the peptide moieties of tryptic glycopeptides so that the glycopeptides (typically <5 amino acid residues) essentially resemble the glycans with respect to hydrophilicity for subsequent separation. Moreover, the short peptide sequences of the proteinase K digest are often inadequate for de novo sequencing of the glycopeptides.Glycopeptide enrichment under normal-phase LC (NPLC) conditions has been demonstrated using various hydrophilic media and different capture and elution conditions (2328). NPLC allows either direct enrichment of peptides modified by various N-linked glycan structures using a ZIC®-HILIC column (2327) or targeting sialylated glycopeptides using a titanium dioxide micro-column (28). However, NPLC is neither effective for enriching less hydrophilic glycopeptides, e.g. the five high mannose type glycopeptides modified by 7–11 monosaccharide units from a tryptic digest of ribonuclease b (RNase B), nor for enriching O-linked glycopeptides of bovine fetuin using a ZIC-HILIC column (23). The use of Sepharose medium for enriching glycopeptides yielded only modest recovery of glycopeptides (28). In addition, binding of hydrophilic non-glycopeptides with these hydrophilic media contaminates the enriched glycopeptides (23, 28).We have recently developed an ion-pairing normal-phase LC (IP-NPLC) method to enrich glycopeptides from complex tryptic digests using Sepharose medium and salts or bases as ion-pairing reagents (29). Though reasonably effective the technique still left room for significant improvement. For example, the method demonstrated relatively modest glycopeptide selectivity, providing only 16% recovery for high mannose type glycopeptides (29). Here we report on a new IP-NPLC method using acids as ion-pairing reagents and polyhydroxyethyl aspartamide (A) as the stationary phase for the effective isolation of tryptic glycopeptides. The method was developed and evaluated using a tryptic digest of RNase B and fetuin mixture. In addition, we demonstrate that O-linked glycopeptides can be effectively isolated from a fetuin tryptic digest by IP-NPLC after removal of the N-linked glycans by PNGase F.The new IP-NPLC method was used to enrich N-linked glycopeptides from the tryptic digests of protein extracts of wild-type (wt) and PglD mutant strains of Campylobacter jejuni NCTC 11168. C. jejuni has a unique N-glycosylation system that glycosylates periplasmic and inner membrane proteins containing the extended N-linked sequon, D/E-X-N-X-S/T, where X is any amino acid other than proline (3032). The N-linked glycan of C. jejuni has been previously determined to be GalNAc-α1,4-GalNAc-α1,4-[Glcβ1,3]-GalNAc-α1,4-GalNAc-α1,4-GalNAc-α1,3-Bac-β1 (BacGalNAc5Glc residue mass: 1406 Da), where Bac is 2,4-diacetamido-2,4,6-trideoxyglucopyranose (30). In addition, the glycan structure of C. jejuni is conserved, unlike in eukaryotic systems (3032). IP-NPLC recovered close to 100% of the bacterial N-linked glycopeptides with virtually no contamination of non-glycopeptides. Furthermore, we demonstrate for the first time that acetylation of bacillosamine is incomplete in the wt using IP-NPLC and label-free MS.  相似文献   

2.
Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.Campylobacter jejuni is a Gram-negative, microaerophilic, spiral-shaped, motile bacterium that is the most common cause of food- and water-borne diarrheal illness worldwide (1). Typical infections are acquired via the consumption of undercooked poultry where C. jejuni is found commensally (2). Symptoms in humans range from mild, non-inflammatory diarrhea to severe abdominal cramps, vomiting, and inflammation (3). Prior infection with C. jejuni is a common antecedent of two chronic immune-mediated disorders: Guillain-Barré syndrome (4) and immunoproliferative small intestine disease (5). A unique molecular trait of C. jejuni is the ability to post-translationally modify proteins by the N-linked addition of a 7-residue glycan (GalNAc-α1,4-GalNAc-α1,4-(Glcβ1,3)- GalNAc-α1,4-GalNAc-α1,4-GalNAc-α1,3-Bac-β1 where Bac is bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucopyranose)) (6) at the consensus sequon (D/E)XNX(S/T) where X is any amino acid except proline (7).The N-linked C. jejuni heptasaccharide is encoded by the pgl (protein glycosylation) gene cluster (810), and the glycan is transferred to proteins by the PglB oligosaccharyltransferase (11) at the periplasmic face of the inner membrane (12). Removal of the N-glycosylation gene cluster (or indeed pglB alone) results in C. jejuni that displays poor adherence to and invasion of epithelial cell lines (13) and reduced colonization of the chicken gastrointestinal tract (14). Although this demonstrates a requirement for glycosylation in virulence, the proteins that mediate this are still unknown, and the overall role of glycan attachment remains to be elucidated. Our current understanding of the structural context of glycosylation in C. jejuni suggests that it does not play a role in steric stabilization by conferring structural rigidity as seen in eukaryotes (15) but occurs preferably on flexible loops and unordered regions of proteins (1618). To investigate the role of glycosylation in protein function, recent studies have utilized mutagenesis to remove the N-linked sequon from three glycoproteins: Cj1496c (19), Cj0143c (20), and VirB10 (21). Removal of glycosylation from Cj1496c and Cj0143c had little effect on protein function; however, glycan attachment was required for correct localization of VirB10. Although the exact role of the glycan remains largely unknown, it appears to be site-specific with a single site, Asn97, influencing localization of VirB10, whereas a second site, Asn32, is dispensable (21). It is clear that a more comprehensive analysis of the C. jejuni glycoproteome is required. A further complication in the elucidation of N-linked glycosylation is the use of the NCTC 11168 strain, which because of laboratory passage (22, 23) may not be the most appropriate model in which to study the virulence properties of glycan attachment. For example, we have recently shown that a surface-exposed virulence factor, JlpA, is glycosylated at two sites (Asn146 and Asn107) in all sequenced C. jejuni strains except NCTC 11168, which contains only Asn146 (24).Glycoproteomics in C. jejuni is also a major technical challenge. Unlike eukaryotic N-linked glycans, the C. jejuni glycan is resistant to removal by protein N-glycosidase F (24) and chemical liberation via β-elimination (6) possibly because of the structure of the unique linking sugar, bacillosamine (25). Analysis therefore requires complementary methodology to elucidate the sites of glycosylation in the presence of the glycan. Preferential fragmentation of the glycan itself during collision-induced dissociation (CID) generally results in poor recovery of peptide fragment ions, and thus identification of the underlying protein and site of attachment remains problematic. MS3 has been attempted for site identification (6, 26); however, the data are limited by the requirement for sufficient ions for two rounds of tandem MS. We have also shown previously that C. jejuni encodes several hydrophobic integral membrane and outer membrane proteins possessing multiple transmembrane-spanning regions that are not amenable to gel-based approaches (27), particularly those using lectins for glycoprotein purification (28). We hypothesize that N-linked glycosylation is more widespread than previously demonstrated (6, 7, 26) because these studies examined only soluble proteins (6, 26) or used lectin affinity (6, 7), which limits the amount and type of detergents that can be used. Recent work (26) has demonstrated the potential of exploiting the hydrophilic nature of the C. jejuni glycan to enable glycopeptide enrichment.The ability to generate product ions useful for the identification of a glycosylated peptide is governed by three factors: the peptide backbone, the glycan, and the fragmentation approach. Multiple strategies exist to separately exploit the first two of these parameters (29, 30), but it is only recently that selective fragmentation of modified peptides has been available through electron transfer dissociation (ETD)1 and electron capture dissociation (31, 32). ETD/electron capture dissociation enable the selective cleavage of the peptide while maintaining the carbohydrate structure, and this has been demonstrated using eukaryotic glycopeptides (33, 34) and more recently glycopeptides isolated from the pathogen Neisseria gonorrhoeae (35). A more recent fragmentation approach is higher energy collisional (C-trap) dissociation (HCD), which uses higher fragmentation energies than standard CID and enables identification of modifications, such as phosphotyrosine (36), via diagnostic immonium ions and high mass accuracy over the full mass range in MS/MS. HCD has not previously been applied to glycopeptides.We applied several enrichment and MS fragmentation approaches to the characterization of the glycoproteome of C. jejuni HB93-13. Sequence analysis determined that the HB93-13 genome contains 510 N-linked sequons ((D/E)XNX(S/T)) in 382 proteins of which 261 (with 371 potential N-linked sites) are predicted to pass through the inner membrane and are therefore the subset that may be glycosylated. We examined trypsin digests of whole cell and membrane protein preparations using zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) and graphite enrichment of gel-separated proteins using several mass spectrometric techniques (CID, HCD, and ETD). This is the first study to demonstrate the potential of using the high energy fragmentation of HCD to overcome the signal disruption caused by labile glycan fragmentation and to provide peptide sequencing within a single step. Manual data analysis was also simplified as the GalNAc fragment ion (204.086 Da) provides a signature that can be used to highlight glycopeptides within a complex mixture. We identified 81 glycosylation sites, including 47 not described previously in the literature and a single site that cannot be unambiguously assigned. The majority of these are present on proteins not amenable to traditional gel-based analyses, such as hydrophobic transmembrane proteins. Our work more than doubles the previously known N-linked C. jejuni glycoproteome and provides a clear rationale for other studies where the peptide and glycan need to remain associated.  相似文献   

3.
4.
Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost-efficient, generic, and effective. This method can be extensively applied to different complex samples for the comprehensive analysis of protein glycosylation.Glycosylation is an extremely important protein modification that frequently regulates protein folding, trafficking, and stability. It is also involved in a wide range of cellular events (1) such as immune response (2, 3), cell proliferation (4), cell-cell interactions (5), and signal transduction (6). Aberrant protein glycosylation is believed to have a direct correlation with the development of several diseases, including diabetes, infectious diseases, and cancer (711). Secretory proteins frequently get glycosylated, including those in body fluids such as blood, saliva, and urine (12, 13). Samples containing these proteins can be easily obtained and used for diagnostic and therapeutic purposes. Several glycoproteins have previously been identified as biomarkers, including Her2/Neu in breast cancer (14), prostate-specific antigen (PSA) in prostate cancer (15), and CA125 in ovarian cancer (16, 17), which highlights the clinical importance of identifying glycoproteins as indicators or biomarkers of diseases. Therefore, effective methods for systematic analysis of protein glycosylation are essential to understand the mechanisms of glycobiology, identify drug targets and discover biomarkers.Approximately half of mammalian cell proteins are estimated to be glycosylated at any given time (18). There have been many reports regarding identification of protein glycosylation sites and elucidation of glycan structures (1930). Glycan structure analysis can lead to potential therapeutic and diagnostic applications (31, 32), but it is also critical to identify which proteins are glycosylated as well as the sites at which the modification occurs. Despite progress in recent years, the large-scale analysis of protein glycosylation sites using MS-based proteomics methods is still a challenge. Without an effective enrichment method, the low abundance of glycoproteins prohibits the identification of the majority of sites using the popular intensity-dependent MS sequence method.About a decade ago, a very beautiful and elegant method based on hydrazide chemistry was developed to enrich glycopeptides. Hydrazide conjugated beads reacted with aldehydes formed from the oxidation of cis-diols in glycans (33). This method has been extensively applied to many different types of biological samples (3441). Besides the hydrazide-based enrichment method, lectins have also been frequently used to enrich glycopeptides or glycoproteins before MS analysis (28, 29, 4246). However, there are many different types of lectins, and each is specific to certain glycans (47, 48). Therefore, no combination of lectins can bind to all glycosylated peptides or proteins, which prevents comprehensive analysis of protein glycosylation. Because of the complexity of biological samples, effective enrichment methods are critical for the comprehensive analysis of protein glycosylation before MS analysis.One common feature of all glycoproteins and glycopeptides is that they contain multiple hydroxyl groups in their glycans. From a chemistry point of view, this can be exploited to effectively enrich them. Ideally, chemical enrichment probes must have both strong and specific interactions with multiple hydroxyl groups. The reaction between boronic acids and 1,2- or 1,3-cis-diols in sugars has been extensively studied (4952) and applied for the small-scale analysis of glycoproteins (5355). Furthermore, boronate affinity chromatography has been employed for the analysis of nonenzymatically glycated peptides (56, 57). Boronic acid-based chemical enrichment methods are expected to have great potential for global analysis of glycopeptides when combined with modern MS-based proteomics techniques. However, the method has not yet been used for the comprehensive analysis of protein N-glycosylation in complex biological samples (58).Yeast is an excellent model biological system that has been extensively used in a wide range of experiments. Last year, two papers reported the large-scale analysis of protein N-glycosylation in yeast (59, 60). In one study, a new MS-based method was developed based on N-glycopeptide mass envelopes with a pattern via metabolic incorporation of a defined mixture of N-acetylglucosamine isotopologs into N-glycans. Peptides with the recoded envelopes were specifically targeted for fragmentation, facilitating high confidence site mapping (59). Using this method, 133 N-glycosylation sites were confidently identified in 58 yeast proteins. When combined with an effective enrichment method, this MS-based analysis will provide a more complete coverage of the N-glycoproteome. The other work combined lectin enrichment with digestion by two enzymes (Glu_c and trypsin) to increase the peptide coverage, and 516 well-localized N-glycosylation sites were identified in 214 yeast proteins by MS (60).Here we have comprehensively identified protein N-glycosylation sites in yeast by combining a boronic acid-based chemical enrichment method with MS-based proteomics techniques. Magnetic beads conjugated with boronic acid were systematically optimized to selectively enrich glycosylated peptides from yeast whole cell lysates. The enriched peptides were subsequently treated with Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F)1 in heavy-oxygen water. Finally, peptides were analyzed by an on-line LC-MS system. Over 800 protein N-glycosylation sites were identified in the yeast proteome, which clearly demonstrates that the boronic acid-based chemical method is an effective enrichment method for large-scale analysis of protein glycosylation by MS.  相似文献   

5.
Mitochondrial functions are dynamically regulated in the heart. In particular, protein phosphorylation has been shown to be a key mechanism modulating mitochondrial function in diverse cardiovascular phenotypes. However, site-specific phosphorylation information remains scarce for this organ. Accordingly, we performed a comprehensive characterization of murine cardiac mitochondrial phosphoproteome in the context of mitochondrial functional pathways. A platform using the complementary fragmentation technologies of collision-induced dissociation (CID) and electron transfer dissociation (ETD) demonstrated successful identification of a total of 236 phosphorylation sites in the murine heart; 210 of these sites were novel. These 236 sites were mapped to 181 phosphoproteins and 203 phosphopeptides. Among those identified, 45 phosphorylation sites were captured only by CID, whereas 185 phosphorylation sites, including a novel modification on ubiquinol-cytochrome c reductase protein 1 (Ser-212), were identified only by ETD, underscoring the advantage of a combined CID and ETD approach. The biological significance of the cardiac mitochondrial phosphoproteome was evaluated. Our investigations illustrated key regulatory sites in murine cardiac mitochondrial pathways as targets of phosphorylation regulation, including components of the electron transport chain (ETC) complexes and enzymes involved in metabolic pathways (e.g. tricarboxylic acid cycle). Furthermore, calcium overload injured cardiac mitochondrial ETC function, whereas enhanced phosphorylation of ETC via application of phosphatase inhibitors restored calcium-attenuated ETC complex I and complex III activities, demonstrating positive regulation of ETC function by phosphorylation. Moreover, in silico analyses of the identified phosphopeptide motifs illuminated the molecular nature of participating kinases, which included several known mitochondrial kinases (e.g. pyruvate dehydrogenase kinase) as well as kinases whose mitochondrial location was not previously appreciated (e.g. Src). In conclusion, the phosphorylation events defined herein advance our understanding of cardiac mitochondrial biology, facilitating the integration of the still fragmentary knowledge about mitochondrial signaling networks, metabolic pathways, and intrinsic mechanisms of functional regulation in the heart.Mitochondria are the source of energy to sustain life. In addition to their evolutionary origin as an energy-producing organelle, their functionality has integrated into every aspect of life, including the cell cycle, ROS1 production, apoptosis, and ion balance (1, 2). Our understanding of mitochondrial biology is still growing. Several systems biology approaches have been dedicated to exploring the molecular infrastructure and dynamics of the functional versatility associated with this organelle (35).To meet tissue-specific functional demands, mitochondria acquire heterogeneous properties in individual organs, a first statement of their plasticity in function and proteome composition (1, 6). The heterogeneity is evident even in an individual cardiomyocyte (7). A catalogue of the cardiac mitochondrial proteome is emerging via a joint effort (35). The dynamics of the mitochondrial proteome manifest at multiple levels, including post-translational modifications, such as phosphorylation. Our investigative goal is to decode this organellar proteome and its post-translational modification in a biological and functional context. In cardiomyocytes, mitochondria are also constantly exposed to fluctuation in energy demands and in ionic conditions. The capacity of mitochondria to cope with such a dynamic environment is essential for the functional role of mitochondria in normal and disease phenotypes (810). Unique protein features enabling the mitochondrial proteome to adapt to these biological changes can be interrogated by proteomics tools (1012). Protein phosphorylation as a rapid and reversible chemical event is an integral component of these protein features (1214).It has been estimated that one-third of cellular proteins exist in a phosphorylated state at least one time in their lifetime (15). However, only a handful of phosphorylation events have been identified to tune mitochondrial functionality (13, 14, 16) despite the fact that the first demonstration of phosphorylation was reported on a mitochondrial protein more than 5 decades ago (17). Kinases and phosphatases comprise nearly 3% of the human genome (18, 19). In mitochondria, ∼30 kinases and phosphatases have been identified thus far within the expected organellar proteome of a few thousand (35, 16). The number of identified mitochondrial phosphoproteins is far below one-third of its proteome size (20). Thus, it appears that the current pool of reported phosphoproteins represents only a small fraction of the anticipated mitochondrial phosphoproteome. The seminal studies from several groups (1214, 16) demonstrated the prevalence as well as the dynamic nature of phosphorylation in cardiac mitochondria, suggesting that obtaining a comprehensive map of the mitochondrial phosphoproteome is feasible.In this study, we took a systematic approach to tackle the phosphorylation of murine cardiac mitochondrial pathways. We applied the unique strengths of both electron transfer dissociation (ETD) and collision-induced dissociation (CID) LC-MS/MS to screen phosphorylation events in a site-specific fashion. A total of 236 phosphorylation sites in 203 unique phosphopeptides were identified and mapped to 181 phosphoproteins. Novel phosphorylation modifications were discovered in diverse pathways of mitochondrial biology, including ion balance, proteolysis, and apoptosis. Consistent with the role of mitochondria as the major source of energy production under delicate control, metabolic pathways claimed one-third of phosphorylation sites captured in this analysis. To study molecular players steering mitochondrial phosphorylation, we probed the effects of calcium loading on phosphorylation. In addition, a number of kinases with previously unappreciated mitochondrial residence are suggested as potential players modulating mitochondrial pathways. Taken together, the cohort of novel phosphorylation events discovered in this study constitutes an essential step toward the full delineation of the cardiac mitochondrial phosphoproteome.  相似文献   

6.
7.
8.
9.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

10.
11.
12.
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.Glycosylation is one of the most common post-translational modifications of proteins. It is estimated that over half of mammalian proteins are glycosylated. Patients with several autoimmune disorders, chronic inflammatory diseases, and some infectious diseases exhibit abnormal glycosylation of serum immunoglobulins and other glycoproteins (15). The biological functions of these modifications in health and disease have become a significant area of interest in biomedical research (6). A subset of these glycoproteins has clustered sites of O-glycosylation with serine- and threonine-rich stretches within the amino acid sequence. Mucins, such as membrane-associated MUC1, are perhaps the best known family of proteins that are heavily O-glycosylated. Their altered expression and aberrant glycosylation have made them potential targets as biomarkers for early detection of cancer (7). Immunoglobulin A1 (IgA1)1 contains both O- and N-glycans (Fig. 1). Aberrant O-glycosylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN) and the closely related Henoch-Schönlein purpura nephritis (1, 8). Interestingly, the aberrantly glycosylated molecules, IgA1 in IgAN and MUC1 in cancer, are recognized by the immune system as neoepitopes as evidenced by formation of specific antibodies (911). Mucin-like bacterial surface proteins exhibit similar properties: the molecules have clustered bacterial O-glycans that mediate cellular adhesion, and blocking antibodies target these glycan-containing epitopes (12).Open in a separate windowFig. 1.IgA1 structural elements. IgA1 has N-linked glycans (filled circles) and O-linked glycans (open circles). The O-glycosylated sites are in the HR between the first and second constant region domains of the heavy chains. The HR is a Pro-rich segment with nine possible sites of O-glycan attachment. Underlined serine and threonine residues are usually glycosylated (31). Arrows show cleavage sites of trypsin and IgA-specific proteases.An O-glycosylated protein from a single source contains a population of variably O-glycosylated isoforms that show a distinct distribution of microheterogeneity of the O-glycan chains in terms of number, sites of attachment, and composition. Characterizing these clustered sites and understanding how the distributions change under different biological conditions or disease states are an analytical challenge. Enzymatic or chemical release of O-glycans is not selective. The heterogeneity, composition, and quantitative aspects of different O-glycan chains can be assessed and quantified by gas chromatographic and/or mass spectrometric techniques. However, the site-specific information and context of location and composition of adjacent chains are lost. Carbohydrate-specific lectin analysis of O-glycoproteins can provide information on glycan composition and comparative differences between samples, such as those from healthy controls and patients with various disease states. We have successfully demonstrated this in the analysis of IgA1 O-glycans from patients with IgAN versus healthy controls and disease controls (1315). This included proximal assessment of sites with galactose (Gal)-deficient O-glycans after digests with IgA-specific proteases (8). Several studies have demonstrated the value of mass spectrometry (MS) in identifying Gal-deficient IgA1 in patients with IgAN (1621), including our work that demonstrated the first direct localization of native sites of O-glycan chains in the hinge region (HR) of IgA1 by use of electron capture dissociation (ECD) (20, 22). ECD and the more recently developed electron transfer dissociation (ETD) have been used to identify sites of O-glycosylation on a variety of proteins (2326). This includes the analysis of sites of O-glycosylation by on-line LC-ECD/ETD MS/MS methods (23, 26, 27).IgAN is the most common primary glomerulonephritis worldwide (28) with about 20–40% of patients developing end stage renal failure. It is characterized by mesangial deposits of IgA1-containing immune complexes (28). The distinctive O-glycan chains of IgA1 molecules play a pivotal role in the pathogenesis of IgAN (1, 10, 1416, 29, 30). IgA1 contains an HR between the first and second heavy chain constant region domains with a high content of Ser, Thr, and Pro. This segment usually has three to five O-glycan chains per HR (31) (see Fig. 1). Aberrantly glycosylated IgA1, deficient in Gal in some of the O-glycans in the HR, in serum is rare in healthy individuals but is present at elevated levels in IgAN patients (13, 15). This distinctive IgA1 is in circulating immune complexes (8, 10, 15) and in the glomerular deposits of IgAN patients (16, 29). The absence of Gal apparently leads to the exposure of neoepitopes, including terminal and sialylated N-acetylgalactosamine (GalNAc) residues (9, 10). These epitopes are recognized by naturally occurring anti-glycan IgG or IgA1 antibodies and, consequently, circulating immune complexes are formed (9, 10, 15) that can deposit in the glomerular mesangia. To identify the pathogenic forms of IgA1, a thorough analysis of O-glycan microheterogeneity, including identification of the attachment sites, will be required.In this work, we demonstrate the complete analysis of O-glycoform microheterogeneity and site localization of the glycoforms in a naturally Gal-deficient IgA1 (Ale) myeloma protein that mimics the nephritogenic IgA1 in patients with IgAN (8, 9). Reversed phase (RP) LC FT-ICR MS successfully identified 10 distinct IgA1 HR fragments representing >99% of total IgA1. AI-ECD of the six most abundant IgA1 HR glycoforms (>95% of total IgA1) was accomplished with three distinct IgA-specific protease + trypsin digestions, identifying sites of Gal deficiency across four distinct IgA1 O-glycoforms. Based on the success of the ECD fragmentation of these IgA1 HR fragments, we adapted the analysis for on-line LC-MS/MS methods for both ECD and ETD. The variety of IgA1 HR proteolytic fragments provides a practical set of guidelines for the ECD/ETD analysis of clustered sites of O-glycosylation on this and other proteins. These results also provide insight into the order of attachment of the O-glycans in the IgA1 HR.  相似文献   

13.
14.
The use of electron transfer dissociation (ETD) fragmentation for analysis of peptides eluting in liquid chromatography tandem mass spectrometry experiments is increasingly common and can allow identification of many peptides and proteins in complex mixtures. Peptide identification is performed through the use of search engines that attempt to match spectra to peptides from proteins in a database. However, software for the analysis of ETD fragmentation data is currently less developed than equivalent algorithms for the analysis of the more ubiquitous collision-induced dissociation fragmentation spectra. In this study, a new scoring system was developed for analysis of peptide ETD fragmentation data that varies the ion type weighting depending on the precursor ion charge state and peptide sequence. This new scoring regime was applied to the analysis of data from previously published results where four search engines (Mascot, Open Mass Spectrometry Search Algorithm (OMSSA), Spectrum Mill, and X!Tandem) were compared (Kandasamy, K., Pandey, A., and Molina, H. (2009) Evaluation of several MS/MS search algorithms for analysis of spectra derived from electron transfer dissociation experiments. Anal. Chem. 81, 7170–7180). Protein Prospector identified 80% more spectra at a 1% false discovery rate than the most successful alternative searching engine in this previous publication. These results suggest that other search engines would benefit from the application of similar rules.The recently developed fragmentation approach of electron transfer dissociation (ETD)1 has become a genuine alternative to the more ubiquitous collision-induced dissociation (CID) for high throughput and high sensitivity proteomic analysis (13). ETD (4) and the related fragmentation process electron capture dissociation (ECD) (5) have been demonstrated to have particular advantages for the analysis of large peptides and small proteins (68) as well as the analysis of peptides bearing labile post-translational modifications (911). The results achieved through ETD and ECD analysis have been shown to be highly complementary to those obtained through CID fragmentation analysis, both through increasing confidence in particular identifications of peptides and also by allowing identification of extra components in complex mixtures (10, 12, 13). As CID and ETD can be sequentially or alternatively performed on precursor ions in the same mass spectrometric run, it is expected that the combined use of these two fragmentation analysis techniques will become increasingly common to enable more comprehensive sample analysis.Software for analysis of CID spectra is significantly more advanced than that for ECD/ETD data. This is partly because the behavior of peptides under CID fragmentation is better characterized and understood so software has been developed that is better able to predict the fragment ions expected. The fragment ion types observed in ETD and ECD are largely known (5, 14, 15), but information about the frequency and peak intensities of the different ion types observed is less well documented.We recently performed a study to characterize how frequently the different fragment ion types are detected in ETD spectra when analyzing complex digest mixtures produced by proteolytic enzymes or chemical cleavage reagents of different sequence specificity (16). These results were analyzed with respect to precursor charge state and location of basic residues, which were both shown to be significant factors in controlling the fragment ion types observed. The results showed that ETD spectra of doubly charged precursor ions produced very different fragment ions depending on the location of a basic residue in the sequence.Based on this statistical analysis of ETD data from a diverse range of peptides (16), in the present study, a new scoring system was developed and implemented in the search engine Batch-Tag within Protein Prospector that adjusts the weighting for different fragment ion types based on the precursor charge state and the presence of basic amino acid residues at either peptide terminus. The results using this new scoring system were compared with the previous generation of Batch-Tag, which used ion score weightings based on the average frequency of observation of different fragment types in ETD spectra of tryptic peptides and used the same scoring irrespective of precursor charge and sequence. The performance of this new scoring was also compared with those reported by other search engines using results previously published from a large standard data set (17). The new scoring system allowed identification of significantly more spectra than achieved with the previous scoring system. It also assigned 80% more spectra than the most successful of the compared search engines when using the same false discovery rate threshold.  相似文献   

15.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

16.
17.
18.
19.
The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii.Acinetobacter baumannii is an emerging opportunistic pathogen of increasing significance to health care institutions worldwide (13). The growing number of identified multiple drug resistant (MDR)1 strains (24), the ability of isolates to rapidly acquire resistance (3, 4), and the propensity of this agent to survive harsh environmental conditions (5) account for the increasing number of outbreaks in intensive care, burn, or high dependence health care units since the 1970s (25). The burden on the global health care system of MDR A. baumannii is further exacerbated by standard infection control measures often being insufficient to quell the spread of A. baumannii to high risk individuals and generally failing to remove A. baumannii from health care institutions (5). Because of these concerns, there is an urgent need to identify strategies to control A. baumannii as well as understand the mechanisms that enable its persistence in health care environments.Surface glycans have been identified as key virulence factors related to persistence and virulence within the clinical setting (68). Acinetobacter surface carbohydrates were first identified and studied in A. venetianus strain RAG-1, leading to the identification of a gene locus required for synthesis and export of the surface carbohydrates (9, 10). These carbohydrate synthesis loci are variable yet ubiquitous in A. baumannii (11, 12). Comparison of 12 known capsule structures from A. baumannii with the sequences of their carbohydrate synthesis loci has provided strong evidence that these loci are responsible for capsule synthesis with as many as 77 distinct serotypes identified by molecular serotyping (11). Because of the non-template driven nature of glycan synthesis, the identification and characterization of the glycans themselves are required to confirm the true diversity. This diversity has widespread implications for Acinetobacter biology as the resulting carbohydrate structures are not solely used for capsule biosynthesis but can be incorporated and utilized by other ubiquitous systems, such as O-linked protein glycosylation (13, 14).Although originally thought to be restricted to species such as Campylobacter jejuni (15, 16) and Neisseria meningitidis (17), bacterial protein glycosylation is now recognized as a common phenomenon within numerous pathogens and commensal bacteria (18, 19). Unlike eukaryotic glycosylation where robust and high-throughput technologies now exist to enrich (2022) and characterize both the glycan and peptide component of glycopeptides (2325), the diversity (glycan composition and linkage) within bacterial glycosylation systems makes few technologies broadly applicable to all bacterial glycoproteins. Because of this challenge a deeper understanding of the glycan diversity and substrates of glycosylation has been largely unachievable for the majority of known bacterial glycosylation systems. The recent implementation of selective glycopeptide enrichment methods (26, 27) and the use of multiple fragmentation approaches (28, 29) has facilitated identification of an increasing number of glycosylation substrates independent of prior knowledge of the glycan structure (3033). These developments have facilitated the undertaking of comparative glycosylation studies, revealing glycosylation is widespread in diverse genera and far more diverse then initially thought. For example, Nothaft et al. were able to show N-linked glycosylation was widespread in the Campylobacter genus and that two broad groupings of the N-glycans existed (34).During the initial characterization of A. baumannii O-linked glycosylation the use of selective enrichment of glycopeptides followed by mass spectrometry analysis with multiple fragmentation technologies was found to be an effective means to identify multiple glycosylated substrates in the strain ATCC 17978 (14). Interestingly in this strain, the glycan utilized for protein modification was identical to a single subunit of the capsule (13) and the loss of either protein glycosylation or glycan synthesis lead to decreases in biofilm formation and virulence (13, 14). Because of the diversity in the capsule carbohydrate synthesis loci and the ubiquitous distribution of the PglL O-oligosaccharyltransferase required for protein glycosylation, we hypothesized that the glycan variability might be also extended to O-linked glycosylation. This diversity, although common in surface carbohydrates such as the lipopolysaccharide of numerous Gram-negative pathogens (35), has only recently been observed within bacterial proteins glycosylation system that are typically conserved within species (36) and loosely across genus (34, 37).In this study, we explored the diversity within the O-linked protein glycosylation systems of Acinetobacter species. Our analysis complements the recent in silico studies of A. baumannii showing extensive glycan diversity exists in the carbohydrate synthesis loci (11, 12). Employing global strategies for the analysis of glycosylation, we experimentally demonstrate that the variation in O-glycan structure extends beyond the genetic diversity predicted by the carbohydrate loci alone and targets proteins of similar properties and identity. Using this knowledge, we developed a targeted approach for the detection of protein glycosylation, enabling streamlined analysis of glycosylation within a range of genetic backgrounds. We determined that; O-linked glycosylation is widespread in clinically relevant Acinetobacter species; inter- and intra-strain heterogeneity exist within glycan structures; glycan diversity, although extensive results in the generation of glycans with similar properties and that the utilization of a single glycan for capsule and O-linked glycosylation is a general feature of A. baumannii but may not be a general characteristic of all Acinetobacter species such as A. baylyi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号