首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An excessive food supply has resulted in an increasing prevalence of overweight and obesity, conditions accompanied by serious health problems. Several studies have confirmed the significant inverse correlation between testosterone and obesity. Indeed after decades of intense controversy, a consensus has emerged that androgens are important regulators of fat mass and distribution in mammals and that androgen status affects cellularity in vivo. The high correlation of testosterone levels with body composition and its contribution to the balance of lipid metabolism are also suggested by the fact that testosterone lowering is associated with important clinical disorders such as dyslipidemia, atherosclerosis, cardiovascular diseases, metabolic syndrome and diabetes. In contrast, testosterone supplementation therapy in hypogonadic men has been shown to improve the lipid profile by lowering cholesterol, blood sugar and insulin resistance. Leptin, ghrelin and adiponectin are some of the substances related to feeding as well as androgen regulation. Thus, complex and delicate mechanisms appear to link androgens with various tissues (liver, adipose tissue, muscles, coronary arteries and heart) and the subtle alteration of some of these interactions might be the cause of correlated diseases. This review underlines some aspects regarding the high correlations between testosterone physiology and body fat composition. J. Cell. Physiol. 227: 3744–3748, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Detrimental changes in body composition are often associated with declining levels of testosterone. Here, we evaluated the notion that multipotent mesenchymal stem cells, that give rise to both fat and muscle tissue, can play a significant role to alter existing body composition in the adult. Transgenic mice with targeted androgen receptor (AR) overexpression in stem cells were employed. Wild-type littermate and AR-transgenic male and female mice were gonadectomized and left untreated for 2 months. After the hypogonadal period, mice were then treated with 5α-dihydrotestosterone (DHT) for 6 weeks. After orchidectomy (ORX), wild-type males have reduced lean mass and increased fat mass compared to shams. DHT treatment was beneficial to partially restore body composition. In wild-type females, ovariectomy (OVX) produced a similar change but there was no improvement with DHT. In targeted AR transgenic mice, DHT treatment increased lean and reduced fat mass to sham levels. In contrast to wild-type females, DHT treatment in female transgenic mice significantly ameliorated the increased fat and decreased lean mass changes that result after OVX. Our results show that DHT administration reduces fat mass and increases lean mass in wild-type males but not females, indicating that wild-type females are not as sensitive to androgen treatment. Because both male and female transgenic mice are more responsive than wild-type, results suggest that body composition remains linked to stem cell fate in the adult and that targeted androgen signaling in stem cells can play a significant role to reverse detrimental changes in body composition in both sexes.  相似文献   

3.
Modulation of sex steroid pre-receptor in adipose tissue is important for the development of metabolic diseases, but its roles in the pathogenesis of polycystic ovary syndrome (PCOS) has not been fully characterized. Herein we compared the expression of key sex steroid converting enzymes in the subcutaneous adipose tissue (SAT) between patients with PCOS and the matched controls. Most of the sex steroid converting enzymes were highly expressed in the SAT, except 17α-hydroxylase (CYP17A1). Compared with the controls, PCOS patients showed significantly higher levels of 3β-hydroxysteroid dehydrogenase1-2 (3β-HSD1-2), aldo-keto reductase 1C 1-3 (AKR1C1-3) and leptin, but lower level of P450 aromatase and 5α-reductase 1. Interestingly, leptin was positively correlated to AKR1C2 expression and negatively to 5α-reductase1 as well as peroxisome proliferator-activated receptor γ (PPARγ). In summary, the expression of enzymes synthesizing testosterone and enzymes inactivating DHT and progesterone was higher in SAT of PCOS patients compared to controls. Correlation analysis indicated that increased leptin expression may be negatively related to local DHT level. These data suggested that sex steroid converting enzymes expression was different in SAT of PCOS patients that might contribute to abnormal testosterone and leptin level of PCOS patients.  相似文献   

4.
5.
The hormonal control of begging and sibling competition is largely unknown, but recent evidence suggests a role for steroid hormones. We tested the influence of the aromatizable androgen testosterone (T), the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT), and 17beta-estradiol (E) on both begging behavior and aggressive behavior in black-headed gull chicks (Larus ridibundus). Chicks of this species have a conspicuous begging display, while their frequently performed early aggressive behavior is facilitated by testosterone and important for territorial defense. Hormone treatment was applied by implants between days 6 and 16 after hatching. Behavior was tested by means of standard stimulus tests. The results were validated in a second experiment under semi-natural conditions. Begging was suppressed by T and DHT and not affected by E. Aggressive Pecking was strongly facilitated by T. The erect threat posture, characteristic for older chicks, was facilitated by T, DHT, and E and the nest-oriented threat display, typical for young chicks, only by T and DHT. Growth was suppressed in the T group. The results indicate that androgen production, needed for territorial defense, has costs in terms of a suppression of begging and growth. It is discussed to what extent older chicks may avoid these costs by converting testosterone to estrogen and why pre-natal and post-natal exposure to androgens differ in their effect on begging behavior.  相似文献   

6.
Obesity is an increasingly important public health issue reaching epidemic proportions. Visceral obesity has been defined as an important element of the metabolic syndrome and expansion of the visceral fat mass has been shown to contribute to the development of insulin resistance and cardiovascular disease. To identify novel contributors to cardiovascular and metabolic abnormalities in obesity, we analyzed the adipose proteome and identified soluble epoxide hydrolase (sEH) in the epididymal fat pad from C57BL/6J mice that received either a regular diet or a “western diet.” sEH was synthesized in adipocytes and expression levels increased upon differentiation of 3T3‐L1 preadipocytes. Although normalized sEH mRNA and protein levels did not differ in the fat pads from mice receiving a regular or a “western diet,” total adipose sEH activity was higher in the obese mice, even after normalization for body weight. Furthermore, peroxisome proliferator–activated receptor γ (PPARγ) agonists increased the expression of sEH in mature 3T3‐L1 adipocytes in vitro and in adipose tissue in vivo. Considering the established role for sEH in inflammation, cardiovascular diseases, and lipid metabolism, and the suggested involvement of sEH in the development of type 2 diabetes, our study has identified adipose sEH as a potential novel therapeutic target that might affect the development of metabolic and cardiovascular abnormalities in obesity.  相似文献   

7.
In order to satisfy government mandates, numerous studies have been performed categorizing potential endocrine disrupting chemicals as (anti)estrogens or (anti)androgens. We report here that dihydrotestosterone (DHT), a potent, non-aromatizable androgen receptor agonist, induces antiestrogenic responses through direct and/or indirect modulation of vitellogenin (Vg), steroid hormone and total cytochrome P450 levels. DHT and two weak, aromatizable androgens, DHEA and androstenedione (0.05-50 mg/kg per day), were fed to juvenile trout for 2 weeks. DHEA and androstenedione significantly increased blood plasma Vg by up to 30- and 45-fold, respectively (P<0.05, t-test). 17beta-Estradiol (E2) increases were also observed with both androgens, albeit with lower sensitivity. DHT markedly decreased Vg and E2 levels, suggesting that DHEA and androstenedione increased Vg and E2 via conversion to E2 and not by estrogen receptor agonism. DHEA and androstenedione had no effect on total cytochrome P450 content, while DHT significantly decreased P450 content in a dose dependent fashion. These results indicate that alterations in metabolism mediated by androgen receptor binding may be responsible for the Vg and E2 decreases by DHT. In an attempt to decipher between receptor and non-receptor androgenic mechanisms of the observed DHT effects, DHT (0, 50 or 100 mg/kg per day) and flutamide (0-1250 mg/kg per day), an androgen receptor antagonist, were fed to juvenile rainbow trout for 2 weeks. Flutamide alone was as effective as DHT in decreasing E2 and Vg levels in males but did not significantly reverse DHT induced Vg decreases in either sex (P>0.05, F-test). DHT decreases in total P450 content were partially attenuated in males by flutamide co-treatment, but not females, suggesting a partial androgenic mechanism to the P450 decreases as well as a fundamental sex difference responding to androgen receptor binding. Moreover, flutamide alone decreased P450 content by up to 30% in males and 40% in females. These effects may be mediated through direct androgen receptor binding irrespective of whether the binding is agonistic or antagonistic. This study indicates that androgen receptor agonists/antagonists can elicit significant antiestrogenic effects that may not necessarily be mediated through classic receptor binding mechanisms and signal transduction pathways.  相似文献   

8.
9.
The growth and development of prostate gland is governed by testosterone. Testosterone helps in maintaining the adipose tissue stores of the body. It is well documented that with advancing age there has been a gradual decline in testosterone levels. Our aim was to study the protective role of daidzein on flutamide-induced androgen deprivation on matrix degrading genes, lipid profile and oxidative stress in Wistar rats. Sub-chronic (60 days) flutamide (30 mg/kg b.wt) administration resulted in marked increase in expressions of matrix degrading genes [matrix metalloproteases 9 and urokinase plasminogen activation receptor]. Additionally, it increased the levels of low density lipoproteins, total cholesterol, triglycerides, and lowered the levels of high density lipoproteins and endogenous antioxidant levels. Oral administration of daidzein (20 and 60 mg/kg b.wt) restituted the levels to normal. Daidzein administration resulted in amelioration of the prostate atrophy, degeneracy and invasiveness induced by flutamide. Our findings suggest that the daidzein may be given as dietary supplement to patients who are on androgen deprivation therapy, to minimize the adverse effects related to it and also retarding susceptibility of patients to cardiovascular diseases.  相似文献   

10.
Androgens have important physiological effects in women. Not only are they the precursor hormones for estrogen biosynthesis in the ovaries and extragonadal tissues, but also act directly via androgen receptors (ARs) throughout the body. Studies of the role of androgens on breast cancer development are controversial and the mechanisms involved are not fully understood. In this report we demonstrate that a non-aromatizable androgen metabolite, dihydrotestosterone (DHT), stimulated cell proliferation in vitro of both estrogen receptor-α (ER-α)-positive MCF-7 cells and ER-α-negative MDA-MB-231 human breast cancer cells. A contribution of ER to the proliferative effect of DHT in MCF-7 cells was supported by actions of small interfering RNA (siRNA) ER-α transfection and of the specific inhibitor of ER, ICI 182,780 to block DHT-induced proliferation. A contribution of the possible conversion of DHT to androstane-3α, 17β-diol was not excluded in these MCF-7 cell studies. In MDA-MB-231 cells, a novel mechanism was implicated, in that anti-integrin αvβ3 or an Arg-Gly-Asp (RGD) peptide targeted at a small molecule binding domain of the integrin eliminated the DHT effect on cell proliferation. Anti-integrin αvβ3 did not affect DHT action on MCF-7 cells. A contribution from classical androgen receptor to the DHT effect in each cell line was excluded. A proliferative DHT signal is transduced in both ER-α-positive and ER-α-negative breast cancer cells, but by discrete mechanisms.  相似文献   

11.
Objective : To determine the role of androgen receptor (AR) activation for adipose tissue metabolism. Sex steroids are important regulators of adipose tissue metabolism in men. Androgens may regulate the adipose tissue metabolism in men either directly by stimulation of the AR or indirectly by aromatization of androgens into estrogens and, thereafter, by stimulation of the estrogen receptors. Previous studies have shown that estrogen receptor α stimulation results in reduced fat mass in men. Research Methods and Procedures : Orchidectomized mice were treated with the non‐aromatizable androgen 5α‐dihydrotestosterone (DHT), 17β‐estradiol, or vehicle. VO2, VCO2, resting metabolic rate, locomotor activity, and food consumption were measured. Furthermore, changes in hepatic gene expression were analyzed. Results : DHT treatment resulted in obesity, associated with reduced energy expenditure and fat oxidation. In contrast, DHT did not affect food consumption or locomotor activity. Furthermore, DHT treatment resulted in increased high‐density lipoprotein‐cholesterol and triglyceride levels associated with markedly decreased 7α‐hydroxylase gene expression, indicating decreased bile acid production. Discussion : We showed that AR activation results in obesity and altered lipid metabolism in orchidectomized mice. One may speculate that AR antagonists might be useful in the treatment of obesity in men.  相似文献   

12.
Recent evidence indicates that testosterone is neuroprotective, however, the underlying mechanism(s) remains to be elucidated. In this study, we investigated the hypothesis that androgens induce mitogen-activated protein kinase (MAPK) signaling in neurons, which subsequently drives neuroprotection. We observed that testosterone and its non-aromatizable metabolite dihydrotestosterone (DHT) rapidly and transiently activate MAPK in cultured hippocampal neurons, as evidenced by phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2. Importantly, pharmacological suppression of MAPK/ERK signaling blocked androgen-mediated neuroprotection against beta-amyloid toxicity. Androgen activation of MAPK/ERK and neuroprotection also was observed in PC12 cells stably transfected with androgen receptor (AR), but in neither wild-type nor empty vector-transfected PC12 cells. Downstream of ERK phosphorylation, we observed that DHT sequentially increases p90 kDa ribosomal S6 kinase (Rsk) phosphorylation and phosphorylation-dependent inactivation of Bcl-2-associated death protein (Bad). Prevention of androgen-induced phosphorylation of Rsk and Bad blocked androgen neuroprotection. These findings demonstrate AR-dependent androgen activation of MAPK/ERK signaling in neurons, and specifically identify a neuroprotective pathway involving downstream activation of Rsk and inactivation of Bad. Elucidation of androgen-mediated neural signaling cascades will provide important insights into the mechanisms of androgen action in brain, and may present a framework for therapeutic intervention of age-related neurodegenerative disorders.  相似文献   

13.
C Ling  J Kindblom  H Wennbo  H Billig 《FEBS letters》2001,507(2):147-150
The aim of this study was to investigate the regulation of resistin, a recently identified adipocyte-secreted peptide, in the adipose tissue of prolactin (PRL)-transgenic (tg) mice using ribonuclease protection assay. The level of resistin mRNA increased 3.5-fold in the adipose tissue of untreated male PRL-tg mice compared to controls. However, there was no difference in resistin expression in the adipose tissue of female PRL-tg mice compared to control mice. PRL-tg male mice have elevated serum testosterone levels and we therefore analyzed the effects of testosterone alone on resistin mRNA expression. Furthermore, the effects of elevated androgen levels on PRL receptor (PRLR) mRNA expression in the adipose tissue were investigated. Resistin mRNA increased 2.6-fold in the adipose tissue of control male mice with elevated serum androgen levels. In addition, PRLR mRNA expression was increased in the adipose tissue of male mice with elevated testosterone. These results suggest testosterone to be a regulator of resistin and PRLR mRNA expression in the adipose tissue of male mice.  相似文献   

14.
Steroid hormones induce rapid membrane receptor-mediated effects that appear to be separate from long-term genomic events. The membrane receptor-mediated effects of androgens on GT1-7 GnRH-secreting neurons were examined. We observed androgen binding activity with a cell-impermeable BSA-conjugated testosterone [testosterone 3-(O-carboxymethyl)oxime (T-3-BSA)] and were able to detect a 110-kDa protein recognized by the androgen receptor (AR) monoclonal MA1-150 antibody in the plasma membrane fraction of the GT1-7 cells by Western analysis. Further, a transfected green fluorescent protein-tagged AR translocates and colocalizes to the plasma membrane of the GT1-7 neuron. Treatment with 10 nM 5alpha-dihydrotestosterone (DHT) inhibits forskolin-stimulated accumulation of cAMP, through a pertussis toxin-sensitive G protein, but has no effect on basal cAMP levels. The inhibition of forskolin-stimulated cAMP accumulation by DHT was blocked by hydroxyflutamide, a specific inhibitor of the nuclear AR. DHT, testosterone (T), and T-3-BSA, all caused significant elevations in intracellular calcium concentrations ([Ca(2+)](i)). T-3-BSA stimulates GnRH secretion 2-fold in the GT1-7 neuron, as did DHT or T. Interestingly GnRH mRNA levels were down-regulated by DHT and T as has been reported, but not by treatment with T-3-BSA or testosterone 17beta-hemisuccinate BSA. These studies indicate that androgen can differentially regulate GnRH secretion and gene expression through specific membrane-mediated or nuclear mechanisms.  相似文献   

15.
Adipose tissue inflammation and insulin resistance are central to the pathogenesis of the metabolic syndrome. Spironolactone, an antagonist of mineralocorticoid receptor, glucocorticoid receptor and androgen receptor, and agonist of progesterone receptor, has anti-inflammatory activity. Blockade of the renin-angiotensin-aldosterone system has been shown to improve glucose metabolism. We have investigated whether spironolactone has direct effects on glucose uptake and interleukin-6 secretion in human adipocytes. Spironolactone, but not its active metabolite canrenoic acid, significantly increased basal and insulin-stimulated glucose uptake in cultured IN VITRO-differentiated adipocytes of women, without affecting insulin sensitivity. The effect was not due to changes in abundance of glucose transporters 1 or 4 or in degree of cell differentiation. Spironolactone, but not canrenoic acid, significantly reduced basal interleukin-6 secretion by cultured stromal-vascular cells. These effects of spironolactone were not mediated by ligand-dependent antagonism of the mineralocorticoid, glucocorticoid, or androgen receptors. Spironolactone may have a novel role in increasing glucose uptake into adipose cells and attenuating adipose tissue inflammation, with implications for management of metabolic syndrome.  相似文献   

16.
The effects of testosterone treatment of abdominally obese men have been assessed by evaluating the following parameters: The metabolic activity of different adipose tissue regions in vivo (using lipid label as a tracer) and in vitro (measuring lipoprotein lipase(LPL) activity), the total and visceral adipose tissue mass, insulin sensitivity, fasting blood glucose, blood lipids, and blood pressure as well as prostate volume. Middle-aged men with abdominal obesity were treated with transdermal administration of testosterone (T), dihydrotestosterone (DHT) or placebo (P) during 9 months. The study was double-blind. Treatment with T was followed by an inhibited uptake of lipid label in adipose tissue triglycerides, a decreased LPL-activity and an increased turn-over rate of lipid label in the abdominal adipose tissue region in comparisons with the DHT and P groups. These effects on adipose tissue metabolism were not detected in the femoral adipose tissue region in any of the groups. T treatment was also followed by a specific decrease of visceral fat mass (measured by CT-scan), by increased insulin sensitivity (measured with the euglycemic glucose clamp), by a decrease in fasting blood glucose, plasma cholesterol and triglycerides as well as a decrease in diastolic blood pressure. In the DHT group an increased visceral mass was detected. No other changes in these variables were found in the DHT and P groups. There were no detectable changes in prostate volume (measured by ultra-sound), prostate specific antigen concentration, genito-urinary history or urinary flow measurements in any of the groups. It is suggested that T substitution to a selected group of men results in general metabolic and circulatory improvements. The prostate area needs further careful attention.  相似文献   

17.
T S Ruh  S G Wassilak  M F Ruh 《Steroids》1975,25(2):257-273
The effect of androgens on the nuclear uptake of both tritiated estradiol (3H-E2) and the estrogen receptor was studied in immature rat uteri. It was demonstrated that in vitro preincubation of immature rat uteri with various androgens (1 muM to 50 muM) followed by incubation with 3H-E2 (20 nM) resulted in a greatly decreased specific nuclear uptake of 3H-E2. Non-androgenic steroids had no effect. It was also confirmed that 5alpha-dihydrotestosterone (DHT) causes the accumulation of the estrogen receptor in the nuclei of uterine tissue. In vitro incubations of rat uteri with DHT (1muM and 50muM) were found to cause maximal nuclear estrogen receptor accumulation to the same degree as caused by estradiol, i.e. the nuclear uptake of approximately 100% of the estrogen receptor. Antiandrogens, which block the binding of androgens to the testosterone receptor in various tissues, did not inhibit the DHT - induced decrease in the 3H-E2 uptake by the uterine nuclei or the DHT - caused accumulation of the estrogen receptor in nuclei. These results seem to indicate that the uterine testosterone receptor has no role in the androgen - induced nuclear uptake of the estrogen receptor. However, the non-steroidal antiestrogens inhibited the DHT - induced nuclear accumulation of the estrogen receptor. This would seem to indicate that the estrogen - and androgen - induced nuclear accumulation of the estrogen receptor share a common mechanism.  相似文献   

18.
Androgens regulate body composition in youth and declining testosterone that occurs with aging is associated with muscle wasting, increased fat mass and osteopenia. Transgenic mice with targeted androgen receptor (AR) over-expression in mesenchymal stem cells (MSC) were generated to explore the role of androgen signaling in the regulation of body composition. Transgenic males, but not females, were shorter and have reduced body weight and visceral fat accumulation. Dual-energy X-ray absorptiometry (DXA) revealed significant reductions in fat mass with a reciprocal increase in lean mass, yet no difference in food consumption or locomotor activity was observed. Adipose tissue weight was normal in brown fat but reduced in both gonadal and perirenal depots, and reduced hyperplasia was observed with smaller adipocyte size in visceral and subcutaneous white adipose tissue. Although serum leptin, adiponectin, triglyceride, and insulin levels were no different between the genotypes, intraperitoneal glucose tolerance testing (IPGTT) showed improved glucose clearance in transgenic males. High levels of the AR transgene are detected in MSCs but not in mature fat tissue. Reduced fibroblast colony forming units indicate fewer progenitor cells resident in the marrow in vivo. Precocious expression of glucose transporter 4 (GLUT4), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT enhancer-binding protein α (C/EBPα) was observed in proliferating precursor cultures from transgenic mice compared to controls. In more mature cultures, there was little difference between the genotypes. We propose a mechanism where enhanced androgen sensitivity can alter lineage commitment in vivo to reduce progenitor number and fat development, while increasing the expression of key factors to promote smaller adipocytes with improved glucose clearance.  相似文献   

19.
The diagnosis of the androgen deficiency of the aging male (ADAM) is suspected in the presence of relatively unspecific clinical symptoms. The biological evidence of androgen deficiency should be given by using an assay taking into account the level of the sex hormone binding protein (SHBG), such as the bioavailable testosterone assay or, at least, the free testosterone index or the calculated free testosterone which both require measuring total testosterone and SHBG levels. Although the threshold value for defining ADAM has not been fully investigated, the lower limit of normal values in healthy young men which is commonly used for including subjects in therapeutic trials, seems appropriate. According to the currently available data, testosterone replacement therapy in hypogonadal aging men seems to be beneficial to quality of life, sexuality, metabolic status, body composition and osteoporosis. The initiation of androgen replacement therapy requires a careful screening for prostate cancer. Prostate and hematocrit must be monitored during the replacement therapy which is intended for maintaining testosterone levels in the physiological range. Associated disease should be accounted for as a possible factor worsening ADAM and could be relevant of a specific therapy.  相似文献   

20.
Equol (7-hydroxy-3[4'hydroxyphenyl]-chroman) is the major metabolite of the phytoestrogen daidzein, one of the main isoflavones found abundantly in soybeans and soy foods. Equol may be an important biologically active molecule based on recent studies demonstrating that equol can modulate reproductive function. In this study, we examined the effects of equol on prostate growth and LH secretion and determined some of the mechanisms by which it might act. Administration of equol to intact male rats for 4-7 days reduced ventral prostate and epididymal weight and increased circulating LH levels. Using binding assays, we determined that equol specifically binds 5alpha-dihydrotestosterone (DHT), but not testosterone, dehydroepiandrosterone, or estrogen with high affinity. Equol does not bind the prostatic androgen receptor, and has a modest affinity for recombinant estrogen receptor (ER) beta, and no affinity for ERalpha. In castrated male rats treated with DHT, concomitant treatment with equol blocked DHT's trophic effects on the ventral prostate gland growth and inhibitory feedback effects on plasma LH levels without changes in circulating DHT. Therefore, equol can bind circulating DHT and sequester it from the androgen receptor, thus altering growth and physiological hormone responses that are regulated by androgens. These data suggest a novel model to explain equol's biological properties. The significance of equol's ability to specifically bind and sequester DHT from the androgen receptor have important ramifications in health and disease and may indicate a broad and important usage for equol in the treatment of androgen-mediated pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号