首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察肢体缺血后处理(LIPC)在大鼠局灶性脑缺血/复灌损伤中的神经保护作用及其作用机制。方法:将大鼠随机分为6组:空白对照组,单侧LIPC组,双侧LIPC组(bLIPC),bLIPC+mito KATP阻断剂5-lydroxydecanoate(5-HD))预处理组,bLIPC+κ-阿片受体拮抗剂nor-binaltorphimine(nor-BNI)预处理组,bLIPC+双侧后肢体外循环组。采用线栓法建立大鼠大脑中动脉栓塞(MCAO)模型,术后进行神经系统症状评分,血浆强啡肽和脑啡肽水平测定,大脑梗死面积测定。结果:单侧L1PC能改善大鼠局灶性脑缺血/复灌损伤后的神经系统功能评分(P〈0.05),并减少大脑梗死面积(P〈0.01);而双侧12PC能显著提高大鼠局灶性脑缺血/复灌损伤后的神经系统功能评分,并显著减少大脑梗死面积(P〈0.01),比单侧LIPC的作用更为明显(P〈0.05)。双侧L/PC后5、15、30min,1和2h这五个时间点,血浆强啡肽水平显著增高(P〈0.01),12和24h这两个时间点恢复至正常水平;而血浆脑啡肽水平的改变与双侧LIPC前比较无显著差异(P〉0.05)。nor-BNI预处理(25nmol)和5-HD预处理(10mg/kg)均消除了双侧LIPC所致的神经系统功能评分增加和大脑梗死面积减少(P〈0.01)。结论:LIPC在大鼠局灶性脑缺血/复灌损伤中具有显著的神经保护作用,其作用可能与LIPC诱导内源性阿片激动剂释放和激活mito KATP有关。  相似文献   

2.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

3.
The role of ATP-sensitive potassium (K(ATP)) channels in the late phase of ischemic preconditioning (PC) remains unclear. Furthermore, it is unknown whether K(ATP) channels serve as end effectors both for late PC against infarction and against stunning. Thus, in phase I of this study, conscious rabbits underwent a 30-min coronary occlusion (O) followed by 72 h of reperfusion (R) with or without ischemic PC (6 4-min O/4-min R cycles) 24 h earlier. Late PC reduced infarct size approximately 46% versus controls. The K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD), given 5 min before the 30-min O, abrogated the infarct-sparing effect of late PC but did not alter infarct size in non-PC rabbits. In phase II, rabbits underwent six 4-min O/4-min R cycles for 3 consecutive days (days 1, 2, and 3). In controls, the total deficit of systolic wall thickening (WTh) after the sixth reperfusion was reduced by 46% on day 2 and 54% on day 3 compared with day 1, indicating a late PC effect against myocardial stunning. Neither 5-HD nor glibenclamide, given on day 2, abrogated late PC. The K(ATP) channel opener diazoxide, given on day 1, attenuated stunning, and this effect was completely blocked by 5-HD. Thus the same dose of 5-HD that blocked the antistunning effect of diazoxide failed to block the antistunning effects of late PC. Furthermore, when diazoxide was administered in PC rabbits on day 2, myocardial stunning was further attenuated, indicating that diazoxide and late PC have additive anti-stunning effects. We conclude that K(ATP) channels play an essential role in late PC against infarction but not in late PC against stunning, revealing an important pathogenetic difference between these two forms of cardioprotection.  相似文献   

4.
Remote ischemic preconditioning reduces myocardial infarction (MI) in animal models. We tested the hypothesis that the systemic protection thus induced is effective when ischemic preconditioning is administered during ischemia (PerC) and before reperfusion and examined the role of the K(+)-dependent ATP (K(ATP)) channel. Twenty 20-kg pigs were randomized (10 in each group) to 40 min of left anterior descending coronary artery occlusion with 120 min of reperfusion. PerC consisted of four 5-min cycles of lower limb ischemia by tourniquet during left anterior descending coronary artery occlusion. Left ventricular (LV) function was assessed by a conductance catheter and extent of infarction by tetrazolium staining. The extent of MI was significantly reduced by PerC (60.4 +/- 14.3 vs. 38.3 +/- 15.4%, P = 0.004) and associated with improved functional indexes. The increase in the time constant of diastolic relaxation was significantly attenuated by PerC compared with control in ischemia and reperfusion (P = 0.01 and 0.04, respectively). At 120 min of reperfusion, preload-recruitable stroke work declined 38 +/- 6% and 3 +/- 5% in control and PerC, respectively (P = 0.001). The force-frequency relation was significantly depressed at 120 min of reperfusion in both groups, but optimal heart rate was significantly lower in the control group (P = 0.04). There were fewer malignant arrhythmias with PerC during reperfusion (P = 0.02). These protective effects of PerC were abolished by glibenclamide. Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range of ischemia-reperfusion syndromes.  相似文献   

5.
Ischemic preconditioning (I-PC) induced by brief episodes of ischemia and reperfusion (I/R) protects the heart against sustained I/R. Although activation of mitochondrial K(ATP) channels (mitoK(ATP)) interacting with reactive oxygen species (ROS) has been proposed as a key event in this process, their role in the antiarrhythmic effect is not clear. This study was designed: 1) to investigate the involvement of mito K(ATP) opening in the effect of I-PC (1 cycle of I/R, 5 min each) on ventricular arrhythmias during test ischemia (TI, 30-min LAD coronary artery occlusion) in Langendorff-perfused rat hearts and subsequent postischemic contractile dysfunction, and 2) to characterize potential mechanisms of protection conferred by I-PC and pharmacological PC induced by mito K(ATP) opener diazoxide (DZX), with particular regards to the modulation of ROS generation. Lipid peroxidation (an indicator of increased ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) in non-ischemic controls, non-preconditioned and preconditioned hearts exposed to TI, I-PC alone, as well as after pretreatment with DZX, mito K(ATP) blocker 5-hydroxydecanoate (5-HD) and antioxidant N-acetylcysteine (NAC). Total number of ventricular premature beats (VPB) that occurred in the control hearts (518+/-71) was significantly (P<0.05) reduced by I-PC (195+/-40), NAC (290+/-56) and DZX (168+/-22). I-PC and NAC suppressed an increase in CD and TBARS caused by ischemia indicating lower production of ROS. On the other hand, I-PC and DZX themselves moderately enhanced ROS generation, prior to TI. Bracketing of I-PC with 5-HD suppressed both, ROS production during PC and its cardioprotective effect. In conclusion, potential mechanisms of protection conferred by mito K(ATP) opening in the rat heart might involve a temporal increase in ROS production in the preconditioning phase triggering changes in the pro/antioxidant balance in the myocardium and attenuating ROS production during subsequent prolonged ischemia.  相似文献   

6.
Adenosine-enhanced ischemic preconditioning (APC) extends the protection afforded by ischemic preconditioning (IPC) by both significantly decreasing infarct size and significantly enhancing postischemic functional recovery. The purpose of this study was to determine whether APC is modulated by ATP-sensitive potassium (K(ATP)) channels and to determine whether this modulation occurs before ischemia or during reperfusion. The role of K(ATP) channels before ischemia (I), during reperfusion (R), or during ischemia and reperfusion (IR) was investigated using the nonspecific K(ATP) blocker glibenclamide (Glb), the mitochondrial (mito) K(ATP) channel blocker 5-hydroxydecanoate (5-HD), and the sarcolemmal (sarc) K(ATP) channel blocker HMR-1883 (HMR). Infarct size was significantly increased (P < 0.05) in APC hearts with Glb-I, Glb-R, and 5-HD-I treatment and partially with 5-HD-R. Glb-I and Glb-R treatment significantly decreased APC functional recovery (P < 0.05 vs. APC), whereas 5-HD-I and 5-HD-R had no effect on APC functional recovery. HMR-IR significantly decreased postischemic functional recovery (P < 0.05 vs. APC) but had no effect on infarct size. These data indicate that APC infarct size reduction is modulated by mitoK(ATP) channels primarily during ischemia and suggest that functional recovery is modulated by sarcK(ATP) channels during ischemia and reperfusion.  相似文献   

7.
We investigated the role of p38 mitogen-activated protein kinase (MAPK) phosphorylation and opening of the mitochondrial ATP-sensitive K(+) [(K(ATP))(mito)] channel in the adenosine A(1) receptor (A(1)AR)-induced delayed cardioprotective effect in the mouse heart. Adult male mice were treated with vehicle (5% DMSO) or the A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.1 mg/kg ip). Twenty-four hours later, hearts were subjected to 30 min of global ischemia and 30 min of reperfusion in the Langendorff mode. Genistein or SB-203580 (1 mg/kg i.p.) given 30 min before CCPA treatment was used to block receptor tyrosine kinase or p38 MAPK phosphorylation, respectively. 5-Hydroxydecanoate (5-HD; 200 microM) was used to block (K(ATP))(mito) channels. CCPA produced marked improvement in left ventricular function, which was partially blocked by SB-203580 and 5-HD and completely abolished with genistein. CCPA caused a reduction in infarct size (12.0 +/- 2.0 vs. 30.3 +/- 3.0% in vehicle), which was blocked by genistein (29.4 +/- 2.3%), SB-203580 (28.3 +/- 2.6%), and 5-HD (33.9 +/- 2.4%). CCPA treatment also caused increased phosphorylation of p38 MAPK during ischemia, which was blocked by genistein, SB-203580, and 5-HD. The results suggest that A(1)AR-triggered delayed cardioprotection is mediated by p38 MAPK phosphorylation. Blockade of cardioprotection with 5-HD concomitant with decrease in p38 MAPK phosphorylation suggests a potential role of (K(ATP))(mito) channel opening in phosphorylation and ensuing the late preconditioning effect of A(1)AR.  相似文献   

8.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

9.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

10.
Das B  Sarkar C 《Life sciences》2005,77(11):1226-1248
The relative contributions of cardiomyocyte sarcolemmal ATP-sensitive K(+) (K(ATP)) and mitochondrial K(ATP) channels in the cardioprotection and antiarrhythmic activity induced by K(ATP) channel openers remain obscure, though the mitochondrial K(ATP) channels have been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we sought to investigate the effects of administration of ATP-sensitive K(+) channel (K(ATP)) openers (nicorandil and minoxidil), a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate (5-HD)) and a specific sarcolemmal K(ATP) channel blocker (HMR 1883; (1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea) prior to coronary occlusion as well as prior to post-ischemic reperfusion on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n=88), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias was achieved by tightening a previously placed loose silk ligature for 30 min. In Group II (n=206), arrhythmias were induced by reperfusion following a 20-min ligation of the left main coronary artery. Both in Group I and Group II, intravenous (i.v.) administration of nicorandil (0.47 mg/kg), minoxidil (0.5 mg/kg), HMR 1883 (3 mg/kg)/nicorandil and HMR 1883 (3 mg/kg)/minoxidil before coronary artery occlusion increased survival rate (86%, 75%, 75% and 86% vs. 55% in the control subgroup in Group I; 75%, 67%, 67% and 75% vs. 46% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias. In Group II, i.v. administration of nicorandil and minoxidil before coronary artery occlusion significantly decreased myocardial infarct size. However, i.v. administration of nicorandil or minoxidil before reperfusion did neither increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and minoxidil were abolished by pretreating the rabbits with 5-HD (5 mg/kg, i.v. bolus), a selective mitochondrial K(ATP) channel blocker but not by HMR 1883 (3 mg/kg). In the present study, higher levels of malondialdehyde (MDA) and lower levels of reduced glutathione (GSH) and superoxide dismutase (SOD) in necrotic zone of myocardium in all the 16 subgroups in Group II suggest little anti-free radical property of nicorandil and minoxidil. We conclude that intervention by intravenous administration of nicorandil and minoxidil (through the selective activation of mitochondrial K(ATP) channels) increased survival rate and exhibited antiarrhythmic and cardioprotective effects during coronary occlusion and reperfusion in anesthetized rabbits when administered prior to coronary occlusion. The cardiomyocyte mitochondrial K(ATP) channel may be a pharmacologically modulable target of cardioprotection and antiarrhythmic activity.  相似文献   

11.
This investigation examined the effect of preconditioning in an in vivo model of ischemia-reperfusion injury. Anesthetized New Zealand White rabbits underwent 30 min of regional myocardial ischemia followed by 2 h of reperfusion. Hearts preconditioned with two cycles of 5 min ischemia-10 min reperfusion (IPC) or with the ATP-sensitive K (K(ATP)) channel opener, diazoxide (10 mg/kg), exhibited significantly (P < 0.05) smaller infarcts compared with control. These treatments also significantly (P < 0.001 to P < 0.05) reduced C1q, C1r, C3, C8, and C9 mRNA in the areas at risk (AAR). The K(ATP) channel blocker 5-hydroxydecanoate (5-HD; 10 mg/kg) attenuated infarct size reduction elicited by IPC and diazoxide treatment. 5-HD partially reversed the decrease in complement expression caused by IPC but not diazoxide. There were no significant differences in complement gene expression in the nonrisk regions and livers of all groups. Western blot analysis revealed that IPC also reduced membrane attack complex expression in the AAR. The data demonstrate that preconditioning significantly decreases reperfusion-induced myocardial complement expression in vivo.  相似文献   

12.
Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca(2+)]i), which is thought to play a critical role in ischemia-reperfusion injury. Ischemic preconditioning (PC) improves myocardial function during ischemia-reperfusion, a process that may involve opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Because pharmacological limitation of mitochondrial calcium concentration ([Ca(2+)]m) overload during ischemia-reperfusion has been shown to improve myocardial function, we hypothesized that PC would reduce [Ca(2+)]m during ischemia-reperfusion and that this effect was mediated by opening mitochondrial K(ATP) channels. Isolated rat hearts were subjected to 25 min of global ischemia and 30 min of reperfusion with or without PC in the presence of mitochondrial K(ATP) channel opening (diazoxide, 100 microM) and blockade [5-hydroxydecanoic acid (5-HD), 100 microM]. Contracture during ischemia (end-diastolic pressure) and functional recovery on reperfusion (developed pressure) were assessed. Total [Ca(2+)]i and [Ca(2+)]m were measured using indo 1 fluorescence. Both PC and diazoxide limited the increase in end-diastolic pressure and resulted in greater functional recovery after 30 min of reperfusion, functional effects that were partially or completely abolished by 5-HD. PC and diazoxide also significantly limited the increase in [Ca(2+)]m during ischemia-reperfusion. In addition, PC lowered [Ca(2+)]i during reperfusion, whereas diazoxide paradoxically resulted in increased [Ca(2+)]i during reperfusion. There was an inverse linear relationship between [Ca(2+)]m and developed pressure during reperfusion. PC limits the ischemia-induced increase in mitochondrial, but not total, [Ca(2+)]i, an effect mediated by opening mitochondrial K(ATP) channels. These data suggest that the lowering of mitochondrial calcium overload is a mechanism of cardioprotection in PC.  相似文献   

13.
Ischemic preconditioning confers cardiac protection during subsequent ischemia-reperfusion, in which protein kinase C (PKC) is believed to play an essential role, but controversial data exist concerning the PKC-delta isoform. In an accompanying study (26), we described metabolic changes in PKC-delta knockout mice. We now wanted to explore their effect on early preconditioning. Both PKC-delta(-/-) and PKC-delta(+/+) mice underwent three cycles of 5-min left descending artery occlusion/5-min reperfusion, followed by 30-min occlusion and 2-h reperfusion. Unexpectedly, preconditioning exaggerated ischemia-reperfusion injury in PKC-delta(-/-) mice. Whereas ischemic preconditioning increased superoxide anion production in PKC-delta(+/+) hearts, no increase in reactive oxygen species was observed in PKC-delta(-/-) hearts. Proteomic analysis of preconditioned PKC-delta(+/+) hearts revealed profound changes in enzymes related to energy metabolism, e.g., NADH dehydrogenase and ATP synthase, with partial fragmentation of these mitochondrial enzymes and of the E(2) component of the pyruvate dehydrogenase complex. Interestingly, fragmentation of mitochondrial enzymes was not observed in PKC-delta(-/-) hearts. High-resolution NMR analysis of cardiac metabolites demonstrated a similar rise of phosphocreatine in PKC-delta(+/+) and PKC-delta(-/-) hearts, but the preconditioning-induced increase in phosphocholine, alanine, carnitine, and glycine was restricted to PKC-delta(+/+) hearts, whereas lactate concentrations were higher in PKC-delta(-/-) hearts. Taken together, our results suggest that reactive oxygen species generated during ischemic preconditioning might alter mitochondrial metabolism by oxidizing key mitochondrial enzymes and that metabolic adaptation to preconditioning is impaired in PKC-delta(-/-) hearts.  相似文献   

14.
AIM OF THE STUDY: To determine the effects of two-staged ischemic preconditioning on myocardial noradrenaline in prolonged ischemia and reperfusion. METHODS: Thirty-two male Wistar rats anesthetised with urethane randomly divided into 2 groups: group 1 (ischemic preconditioning group, n = 16), and group 2 (control, n = 16). Myocardial interstitial noradrenaline levels were measured using a microdialysis technique. Ischemic preconditioning was elicited by two episodes: 5 min of ischemia and 10 min of reperfusion. The intermittent occlusions were followed by prolonged occlusion (60 min) and reperfusion (60 min). RESULTS: An increase in interstitial noradrenaline was observed in 10 min of prolonged ischemia in group 2, and in 20 min in group 1. After 20 min of myocardial ischemia there was a significant difference between groups (p < 0.05) in interstitial noradrenaline levels. In control group, it was 60% higher. In reperfusion, noradrenaline levels decreased markedly in group 1. CONCLUSION: We suggest that ischemic preconditioning by two episodes: 5-min ischemia and 10-min reperfusion prevents excessive noradrenaline interstitial accumulation, perhaps, through protection of physiological uptake I carrier.  相似文献   

15.
Zhang Y  Wu YX  Hao YB  Dun Y  Yang SP 《Life sciences》2001,68(9):1013-1019
This study investigated the protective effects of ischemic preconditioning on intestinal ischemic injury and the role of endogenous opioid peptides (EOP) in these effects. Ischemia-reperfusion (I/R) induced by 30-min of ischemia and 60-min of reperfusion significantly increased the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and resulted in serious intestinal edema (wet weight/dry weight). The ischemic preconditioning (PC) elicited by three 8-min occlusion periods interspersed with 10-min reperfusion markedly attenuated intestinal injury caused by ischemia-reperfusion. Pretreatment with morphine (300 microg x kg(-1), i.v.) 10-min before ischemia and reperfusion mimicked the protection produced by PC. Naloxone (3 mg x kg(-1), i.v.) abolished the protection of morphine-induced preconditioning and ischemic preconditioning in rat intestine. However, there were no changes between naloxone alone and control groups. Treatment with naloxone before ischemia-reperfusion had no effect on animals compared with the I/R group. In addition, we also measured the content of endogenous opioid peptides (Leu-enkephalin) in the effluent which was collected before and during preconditioning. It was shown that the release of leu-enkephalin was markedly increased during preconditioning. These results suggested that EOP might play an important role in PC in rat small intestine.  相似文献   

16.
Reactive oxygen species (ROS) and nitric oxide (NO) are implicated in induction of ischemic preconditioning. However, the relationship between these oxidant signals and opening of the mitochondrial ATP-dependent potassium (K(ATP)) channel during early preconditioning is not fully understood. We observed preconditioning protection by hypoxia, exogenous H(2)O(2), or PKC activator PMA in cardiomyocytes subjected to 1-h ischemia and 3-h reperfusion. Protection was abolished by K(ATP) channel blocker 5-hydroxydecanoate (5-HD) in each case, indicating that these triggers must act upstream from the K(ATP) channel. Inhibitors of NO synthase abolished protection in preconditioned cells, suggesting that NO is also required for protection. DAF-2 fluorescence (NO sensitive) increased during hypoxic triggering. This was amplified by pinacidil and inhibited by 5-HD, indicating that NO is generated subsequent to K(ATP) channel activation. Exogenous NO during the triggering phase conferred protection blocked by 5-HD. Exogenous NO also restored protection abolished by 5-HD or N(omega)-nitro-l-arginine methyl ester in preconditioned cells. Antioxidants given during pinacidil or NO triggering abolished protection, confirming that ROS are generated by K(ATP) channel activation. Coadministration of H(2)O(2) and NO restored PMA-induced protection in 5-HD-treated cells, indicating that ROS and NO are required downstream from the K(ATP) channel. We conclude that ROS can trigger preconditioning by causing activation of the K(ATP) channel, which then induces generation of ROS and NO that are both required for preconditioning protection.  相似文献   

17.
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P < 0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P < 0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P < 0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P < 0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.  相似文献   

18.
Previous work from our laboratory has shown that the sarcolemmal K(ATP) channel (sK(ATP)) is required as a trigger for delayed cardioprotection upon exogenous opioid administration. We also established that the mitochondrial K(ATP) (mK(ATP)) channel is not required for triggering delayed delta-opioid-induced infarct size reduction. Because mechanistic differences have been found among delta-opioids and that due to ischemic preconditioning (IPC), we determined whether the triggering mechanism of delayed IPC-induced infarct size reduction involves either the sK(ATP) or mK(ATP). Male Sprague-Dawley rats received either sham surgery or IPC (3- to 5-min cycles of ischemia and reperfusion) 24 h before being subjected to 30 min of ischemia and 2 h of reperfusion. Infarct size was determined and expressed as a percentage of the area at risk, with significance compared with sham reported at P 相似文献   

19.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

20.
Ischemic preconditioning (IPC) constitutes an endogenous protective mechanism in which one or more brief periods of myocardial ischemia and reperfusion render the myocardium resistant to a subsequent more-sustained ischemic insult. Pharmacological preconditioning represents an ideal alternative of IPC. We now describe the design and synthesis of indole, quinoline, and purine systems with an attached pharmacophoric nitrate ester group. The indole and quinoline derivatives 4 and 5 possess structural features of the nitrate containing K(ATP) channel openers. Purine analogues 11 and 12, substituted at the position 6 by a piperidine moiety and at position 9 by an alkyl nitrate, could combine the effects of the nitrate containing K(ATP) channel openers and those of adenosine. Compound 13 bears the nicotinamide moiety of nicorandil instead of nitrate ester. Compounds 4, 5, and 11 reduced infarction and the levels of malondialdehyde (MDA) at reperfusion in anesthetized rabbits. Compounds 12 and 13 did not significantly reduce the infarct size. Analogues 4 and 5 increased cGMP and MDA during ischemia, while combined analogue 4 and mitoK(ATP) blocker 5-hydroxydecanoic acid (5-HD) abrogated this benefit suggesting an action through mitoK(ATP) channel opening. Treatment with derivative 11 combined with 5-HD as well as treatment with 11 and adenosine receptor blocker 8-(p-sulfophenyl)theophylline (SPT) did not abrogate cardioprotection. Compound 11 is a lead molecule for the synthesis of novel analogues possessing a dual mode of action through cGMP-mitoK(ATP) channel opening-free radicals and through adenosine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号